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Summary

The objective of this work is to devise a process that recovers an image that

has been blurred by convolution with a point spread function (PSF) in a

more robust manner than is currently possible with the Nearest-Neighbor

Pixel Deconvolution (NNPD) algorithm proposed by Wang & Lu [11]. While

PSF blurring is a fundamental limitation of optical imaging devices, it can

be compensated for to some degree by utilizing a priori knowledge of the

PSF. The NNPD algorithm at its core is a Fourier transform-based method

that allows for deblurring by dividing by the transform of the PSF. The pos-

sibility of division-by-zero is mitigated in the standard NNPD algorithm by

employing a threshold. Justifications for this threshold are, however, limited.

Instead, in this work are various approaches from linear algebra, Fourier space

smoothing, Laplace transforms, and complex analysis that show promise at

improving robustness. Results are presented, and suggestions for future ef-

forts are made.

Contents

1. Introduction 2

2. Laplace transform method 5

2.1. Weeks’ method 5

2.2. Fixed Talbot’s method 6

2.3. Bi-lateral Laplace Transform 10

3. Full Signal Recovery with Cauchy integrals 10

4. Regularized optimization technique 15

4.1. Tikhonov regularization 15

4.2. Control approach 16

4.3. Wiener deconvolution 18

5. Smoothed point spread function (PSF) 19

5.1. Truncated Gaussian filter 19

5.2. Regularization of the optical transfer function (OTF) 22

6. Sparse deblur dictionary learning 23

7. Conclusion and discussions 25

7.1. Summary of Results 25

7.2. Future Directions 25

1 Introduction

Using image processing to enhance image resolution has many commercial and defense appli-

cations. Popular image-processing algorithm approaches include inverse filters and iterative al-

gorithms. Specific examples include Wiener deconvolution, Regularized Least Squares, Linear

Least Squares, and the Nearest Neighbor Pixel Deconvolution (NNPD) algorithm.

The starting point for this project is the NNPD algorithm. It belongs to a class of inverse

filter-based methods. As such, it takes the Fourier transform (FT) of an image and divides it by

the FT of the point spread function (PSF). The Fourier transform of the PSF is known as the

optical transfer function (OTF). The point spread function is specific to the imaging device and

describes the response to a perfect point source. However, during division in Fourier space, some
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Figure 1. Nearest Neighbor Pixel Model [11].

denominators may become zero. An approach utilized in the NNPD algorithm is to introduce a

threshold below which the threshold value replaces all values of the OTF. Proper threshold value

selection is critical; if it is too low, it may increase noise and introduce ringing.

More precisely, a detected image Id can be written as convolution of the object image Io and

the PSF without noise:

Id = Io ∗ PSF, (1.1)

or

g = f ∗ h. (1.2)

Taking a Fourier transform and appealing to the convolution theorem, we find that the pristine

image in frequency space satisfies

F [f ] =
F [g]

F [h]
=⇒ f = F−1

[
F [g]

F [h]

]
(1.3)

where the last step is typically known as the naive deconvolution.

One practical concern arises when F [h] becomes small or vanishes altogether in frequency

space, creating a typical “division-by-zero” problem. To elaborate, the NNPD assumes the PSF

is symmetric and uses a nearest neighbor pixel model to write the PSF according to the distance

between any pixel to the PSF center as shown in Fig. 1 The PSF’s center pixel has a value of

a0; its 1st order of nearest 4 neighbor pixels (left, right, up and down) have value of a1; it’s 2nd

order of 4 nearest neighbors have value of a2, and so forth. Using delta functions for each pixel,

the PSF can be written as:

PSFjk = a0δjk + a1 (δj+1,k + δj−1,k + δj,k+1 + δj,k−1)

+a2 (δj+1,k+1 + δj−1,k−1 + δj+1,k−1 + δj−1,k+1) + · · · (1.4)

The Optical Transfer Function (OTF), now as the discrete Fourier transform of (1.4) (or simply

F [h] in (1.3)), results in a cosine series owing to the shift theorem of Fourier transform. The
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Figure 2. Reconstruction using NNPD with different threshold levels. Top left: original image.

explicit form of the OTF is given by

F [h]lm := OTFlm = a0 + 2a1

[
cos

(
2πm

N

)
+ cos

(
2πl

N

)]
(1.5)

+2a2

[
cos

(
2π (l +m)

N

)
+ cos

(
2π (l −m)

N

)]
+ · · · . (1.6)

Though this expression can be directly substituted back to (1.3) for deconvolution, the cosine

series admits countably many zeros in the Fourier domain, contributing to the infamous division-

by-zero issue. Wang & Lu [11] used a lower threshold to bound the OTF away from zero as a

remedy. While the resulting deconvolution has enhanced the sharpness of the target (see figure 2),

it has also produced noticeable noise and ringing.

Analytical approaches to (1.3) center on deforming the contour of integration for the inverse

Fourier transform to avoid division by zero. However, converting an actual image into Fourier

space results in the Fourier transform over a discrete mesh. Deforming the contour results in

finding interpolated values of the Fourier transform as part of the calculation of the inverse,

which has the potential to increase the noise to the original image (see Greengard & Lee [4]

on techniques to resolve nonuniform Fourier transforms). This class of problems is known to be

ill-posed, so the approaches for the solution require care.

Below we describe various techniques to perform (1.3) in a mathematically robust way. Section

2 focuses on using Laplace transforms in place of the Fourier transform via Weeks’ Method,

the Fixed Talbot’s Method, and the Bi-Lateral Laplace Transform. Section 3 attempts to use

Cauchy integrals to improve signal clarity. Section 4 centers on different regularization techniques

to prevent the division by zero condition. Section 5 investigates modifications of the continuous

analogue of the NNPD. Section 6 looks at a deblurring technique using dictionary learning. We

conclude in Section 7.
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2 Laplace transform method

One approach to circumvent the numerical instability inherent to Fourier deconvolution in the

NNPD is utilizing the more general Laplace transform. The Fourier transform can be viewed as a

special case of the Laplace transform. Consideration, however, must be given to the sense of the

transformation. While applying the Fourier transform to spatial problems is standard, Laplace

transforms are typically utilized for causal time-dependent problems. For example, while both

transforms obey the convolution-to-product property, the casual Laplace transform convolution

integral has bounds from 0 to time t. Two approaches have been considered to address this

fundamental difference.

One is to utilize numerical inversion methods with the standard convolution sense and consider

the radial aspect of the transform. That is to utilize polar coordinates in the image and use Fourier

transforms in θ but Laplace in radial r. Existing numerical inversion methods, such as Weeks’

and Talbot’s method, have been employed.

A second approach is to consider the bilateral Laplace transform. The bilaterial Laplace trans-

form also obeys the convolution-to-product property and is not casual.

Lb(s) =

∫ ∞

−∞
e−stf(t)dt (2.1)

The inverse bilateral Laplace transform is also defined by the Bromwich contour Γ.

f(t) =
1

2πi

∫
Γ

estF (s)dt (2.2)

However, unlike the standard standard Laplace transform which has the half plane to the left

of the contour as the region of convergence, the region of convergence for the bilateral Laplace

transform is typically much more restrictive. This reflects the fact that the integral much converge

for both the positive and negative time t.

2.1 Weeks’ method

Contributed by Anton Iatcenko and Marina Chugunova

Due to time constraints, we only performed a one-dimensional version of the deblurring pro-

cedure. Beginning with a sharp image u0(t) and a given blurring kernel κ(t) (a decaying expo-

nential), we construct a synthetic blurred image by a causal convolution:

ublrd(t) =

∫ t

0

u0(t)κ(t− τ) dτ =

∫ t

0

u0(t)e
−a(t−τ) dτ. (2.3)

The (one-dimensional) image is treated as a piece-wise constant function, so its Laplace transform

can be computed exactly:

ûblrd(s) =
1

s

N∑
j=1

uj

[
e−tj−1s − e−tjs

]
. (2.4)

The Laplace transform of the smoothing kernel is also computed exactly, from which the de-

blurred image in Laplace space is computed by setting

ûde-blrd(s) =
ûblrd(s)

κ̂(s)
, (2.5)

from which the image in real space is obtained by inverting the Laplace transform using Weeks’
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method [5]. It assumes the signal is represented in the Laguerre basis:

ude-blrd(t) = eσt
∑

ane
−btLn(2bt), (2.6)

where the coefficients are computed using the Bromwich contour, which results in the formula

an =
e−nπ/(2M)

2M

M−1∑
m=M

(
2be−inθm

1− eiθm+1/2

)
ûde-blrd

(
σ − b

eiθm+1/2 + 1

eiθm+1/2 − 1

)
,

where σ and b are free parameters chosen to minimize the estimated error.

Some results are presented in Figure 3 below: we see that the results of de-blurring exhibit

some sharp oscillations not present in the original image. This can likely be attributed to a

Gibbs phenomenon: as the original discontinuous function is represented by a sum of Laguerre

polynomials, some oscillations near the edges are expected.

We also note that the effective supports of the pulses are recovered fairly well in both cases.

In particular, in test case 3b, we do recover a good separation between two distinct parts of the

image, which was lost almost entirely to blurring.

(a) De-blurring a single pulse (b) De-blurring a double pulse

Figure 3. Pictures of animals

2.2 Fixed Talbot’s method

Contributed by Anton Iatcenko and Marina Chugunova

From the Matlab code for the classical Talbot’s method [5], which was based on high precision

computations and used 1000 digits to get accuracy for inverse Laplace transform of Gaussian

at the level 10−17. Researching modern articles related to modifications and improvements to

Talbot’s method, we found that Fixed Talbot’s method algorithm was used. We modified the

Matlab code, and using only 25 digits could get an accuracy level of 10−15. The computational

time for the original code was as long as 270 seconds, and the modified one was down to just 35

seconds.

In 1979, Talbot pioneered the approach to numerical Laplace inversion by deforming the stan-

dard contour in the Bromwich integral [9]. Only a few such algorithms have been developed

along these lines [7, 1, 2]. It seems surprising how little attention this approach has received in

the literature relative to other methods. Unlike the Fourier series or Post-Widder approaches,
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Talbot’s method idea is to replace the contour with one that opens toward the negative real axis:

s(θ) = σ + λθ(iv + cot(θ))

where λ, v, σ ∈ R and θ ∈ (−π, π).

It also requires that:

• |F (s)| → 0 uniformly as |s| → ∞
• ℜ(sj) < K for all singularities sj

(a) Talbot’s contours (b) Relative accuracy plot in %

Figure 4. Illustration of the Talbot’s Method

(a) Talbot method (b) Fixed Talbot method

Figure 5. On the left: Talbot method: high precision computations with 1000 digits, computa-

tional time 270 seconds. On the right: Fixed Talbot method: high precision computations with

25 digits, computational time 35 seconds.

It thus inherently assumes that the physical system damps highly oscillatory terms and is not

appropriate for purely conservative problems. From a numerical perspective, however, damping

the highly oscillatory terms in the inversion integral is a stabilizing procedure since it is these

that provide the largest contribution to the error when one performs the numerical quadrature

of the Laplace inversion integral.

The primary difficulty of the Talbot method is the selection of accurate values for the con-

tour parameters. The original paper by Talbot is rather lengthy, with only a few pages on the
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derivation of contours using the steepest-descent method. The remaining pages are a detailed

discussion of how to determine the parameters from the properties of the function F (s) to in-

vert. The nontrivial task of developing software to select optimal values for these parameters

has been undertaken for scalar functions [7], but the determination of these coefficients relies

heavily on the known location of the singularities of the Laplace space functions. In response,

many attempts have been made to simplify Talbot’s method or provide alternative integration

contours [2, 10].

The Fixed Talbot Method, introduced by Abate and Valkó (Abate, J., Valkó, P. P. (2004).

Multi-precision Laplace transform inversion. Numerical Methods for Engineering), is a simplified

and efficient technique for the numerical inversion of Laplace transforms. This method builds

upon the foundational work by Talbot, who proposed the idea of deforming the Bromwich contour

in the complex plane to achieve more accurate numerical inversions. The Fixed Talbot Method

fixes certain parameters, which makes it easier to implement and apply while still retaining high

accuracy for a wide range of functions.

2.2.1 Mathematical Formulation

The central idea of the Fixed Talbot Method is to use a predefined contour in the complex plane

for the inversion integral:

f(t) =
1

2πi

∫
B

exp(ts)f̂(s) ds.

In the Bromwich integral, the contour B is a vertical line defined by s = r + iy, where −∞ <

y < +∞ and r is a fixed value chosen such that all the singularities of the transform are to the

left of it. Talbot’s approach involves deforming this contour to a new path in the complex plane,

which can be parameterized as:

s(θ) = rθ(cot θ + i), −π < θ < π,

where r is a parameter that needs to be fixed. This parameter is crucial for balancing numerical

stability and accuracy.

2.2.2 Parameter Selection

The selection of the parameter r is essential for the method’s performance. In the Fixed Talbot

Method, r is set to:

r =
2M

5t
,

where M is the number of terms in the summation series and t is the time variable. This choice

of r ensures that the contour captures the essential features of the integrand, thus improving the

numerical inversion’s accuracy and efficiency.

2.2.3 Numerical Implementation

The numerical inversion process using the Fixed Talbot Method involves several steps:

1. **Discretize the Contour**: The contour s(θ) is discretized intoN points {zk} along the path
defined by s(θ). 2. **Evaluate the Integrand**: The integrand is evaluated at each discretized

point zk:

F (zk) = exp(ts(θ))f̂(s(θ))s′(θ),
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where s′(θ) = ir(1 + iσ(θ)) and

σ(θ) = θ + (θ cot θ − 1) cot θ.

3. **Numerical Integration**: The integral is approximated using the trapezoidal rule:

f(t,M) =
r

M

[
1

2
f̂(r) exp(rt) +

M−1∑
k=1

ℜ
[
exp(ts(θk))f̂(s(θk))(1 + iσ(θk))

]]
.

By fixing the parameter r, the Fixed Talbot Method simplifies the implementation, reducing

the complexity of dynamically adjusting the contour for different functions.

2.2.4 Advantages and Limitations

The Fixed Talbot Method offers several advantages: - **Simplicity**: The method is straightfor-

ward to implement because it fixes the contour parameters. - **Efficiency**: The fixed contour

allows for efficient computation, as the parameters do not need to be adjusted dynamically for

different transforms. - **Accuracy**: Despite the fixed contour, the method produces accurate

results for a wide range of Laplace transforms.

However, there are also limitations: - **Flexibility**: The fixed contour may not be optimal

for all functions, particularly those with complex singularities or branch cuts. - **Precision**:

While the method provides good accuracy for many practical purposes, it may not achieve the

same level of precision as methods that adapt the contour based on the specific function being

inverted.

2.2.5 Practical Implementation

In practical applications, the Fixed Talbot Method has been shown to be highly effective for

numerical Laplace transform inversion. The method’s performance has been evaluated for a

large class of transforms, with the relative error estimate given by:∣∣∣∣f(t)− f(t,M)

f(t)

∣∣∣∣ ≈ 10−0.6M .

This indicates that the number of significant digits in the approximant f(t,M) is about equal to

0.6M .

Despite its simplicity, the Fixed Talbot Method requires careful attention to potential com-

puting problems. For instance, issues may arise with the computation of certain transforms, such

as those involving branch cuts for the square root function. These problems can be mitigated by

expressing the transform in a way that avoids problematic branch cuts.

2.2.6 Conclusion

The Fixed Talbot Method provides a practical and efficient approach for the numerical inversion

of Laplace transforms. Fixing key parameters simplifies the implementation and reduces compu-

tational complexity while maintaining a high degree of accuracy. This makes it a valuable tool

for engineers and scientists who require reliable numerical inversion of Laplace transforms in

their work. The method’s fixed contour and parameter choices ensure robust performance across

a wide range of functions, demonstrating its versatility and utility in various applications.
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2.3 Bi-lateral Laplace Transform

Contributed by Nikki Xu, Rye Fought, and Trishala Thakur

For a suitable function f(t), the bilateral Laplace transform is defined as the double-sided

improper integral

Lb{f}(s) =
∫ ∞

−∞
e−stf(t)dt (2.7)

and its region of convergence is often a strip in the complex domain where the real part of s

is bounded, i.e., α < ℜ(s) < β. In particular, when this strip contains the imaginary axis, we

recover the Fourier transform with the following relation

Lb{f}(s = iω) = F{f}(s)

where F denotes the Fourier transform.

The inverse bilateral Laplace transform is also defined by a contour integration over the contour

Γ.

f(t) =
1

2πi

∫
Γ

estF (s)dt (2.8)

If choosing the Bromwich contour Γ = σ + iω, then one must distinguish between different

regions of the complex plane based on the value of σ. The choice of σ can yield a different time

domain inverse function. For the standard unilateral Laplace transform, the Bromwich contour

is so that σ is greater than all poles, that is to the right of all poles in the complex plane. In the

bilateral Laplace transform, this condition is not placed on Γ.

3 Full Signal Recovery with Cauchy integrals

Contributed by Maxim Zyskin

Let’s assume blurring by scaled translates of a kernel χ,

Id(x) = h ∗ I0(x) :=
∫ (∑

m

amχ(x− x′ −m)

)
I0(x

′)dx′, (3.1)

where, in the 2d version, m = (m1,m2),mi = 0,±1,±2, . . . . Fourier transform f̂(k) of a function

f(x) on the real space is

f(x) → f̂(k) :=

∫
f(x)eikxdx (3.2)

As the Fourier transform of a convolution is a product of the Fourier transforms, and as translates

by some a in the real space correspond to multiplications by eika in the Fourier space, it follows

that the Fourier transform version of (3.1) is

Îd(k) = χ̂(k)
(∑

m ameikm
)
Î0(k), (3.3)

(to see that, it may help to think of splitting kx as k(x − x′ + m) + kx′ + km while Fourier

transforming summands in (3.1)) Thus at least formally, the reconstructed image I0 in the Fourier

space is given by

Î0(k) =
Îd(k)

χ̂(k) (
∑

m ameikm)
(3.4)

and in the real space is a convolution of the blurred image with the kernel hinv, whose Fourier

symbol is

ĥinv =
1

χ̂(k)

1∑
m ameikm (3.5)
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Here, we assume that the true image is sufficiently nice and that the standard Fourier inversion

formula is applicable. But for the kernel hinv itself, as ĥinv may have singularities for real values

of k or not have sufficiently fast decay as k → ∞, the inverse transform shall be understood in

the sense of generalized functions, on a sufficiently nice space of test functions.

As Fourier products correspond to convolutions in the real space, we can treat one at a time

the shape factor 1

χ̂(k)
and the translation factor 1∑

m ameikm in the kernel ĥinv.

We discuss below the inverse Fourier transform of the translation factor 1∑
m ameikm (this

corresponds to the shape function χ being a delta-function, and its Fourier transform = 1). Note

that

eikm = z1
m1z2

m2 , z1 := eik1 , z2 := eik2 , (3.6)

Thus, we would want to make sense of

h1,inv :=

∫
e−ikx

W (k)

dk

(2π)
d
,

W (k) :=
∑

m ameikm =
∑

m amzm, zm := z1
m1z2

m2 .

(3.7)

Thus zeroes of W =
∑

amz1
m1z2

m2 are determined, in the 2d case, by zeroes of a polynomial

in z1, z2 variables. One of the integrations in (3.7) can be performed using residues at zeroes of

W (while keeping the second integration variable fixed). That would typically produce algebraic

factors having branch cuts in the remaining integration variable, for example (3.11), where D

is a polynomial in the remaining integration variable, thus the second integration needs other

techniques or a numerical evaluation. (The convergence of the latter would be improved if in the

remaining integration there are no singularities near the integration contour).

Let us now consider the simplified case of 1-dimensional integration and further assume that

only m = 0,±1 terms are present:

W = a0 + a1z + a−11/z =
a1
z

(z − z+) (z − z−) , z+,− :=
−a0 ±

√
a20 − 4a1a−1

2a1
(note that in the 2d case those ai are polynomials in z2, 1/z2).

(3.8)

Further, assume that the discriminant D = a20−4a1a−1 is positive (or negative but a1 ̸= a−1); in

that case, there are no zeroes of W corresponding to k on the real axes, or equivalently, with z on

the unit circle. Note that away from zeroes of W , in particular on the large k-semicircles in the

complex plane, 1/W is bounded, and e−ikx is small and → 0 as |k| → ∞, on the upper (lower)

k-semicircle when, respectively, x > 0 (x < 0); thus we may close the k contour by a semi-circle

in the corresponding half-plane, and compute the k integral by residues. Assume D > 0 and

a0 > 0. Then the roots z+, z− < 0, and corresponding k± are given by

k± = {−i log |z±|+ π(2n+ 1), n = 0,±1,±2, . . .} . (3.9)

Further, assume that a± > 0, and a0 is sufficiently larger than a±, so that in particular a0 >

a1 + a−1. In that case, z− < −1,−1 < z+ < 0, and Im k+ > 0, Im k− < 0 in (3.9).

The residues (with respect to k) at z+ are e−ik+x

ia1(z+−z−) ; this can be equivalently expressed as:

resk± = ±e−ik±x

i
√
D

,D = a20 − 4a1a−1. (3.10)

Closing the integration contour by large circles in the corresponding half k-planes, the Cauchy

theorem implies that

h1,inv(x) =
eiπx

|z∓|x
√
D

∑
n

e−2πinx =
(−1)x

|z∓|x
√
D

∑
m

δ(x+m), x>
<
0 (3.11)
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Let’s see how this works:

Image: f(x), assumed to be continuous and decaying sufficiently fast as |x| → ∞.

Blurred image:

d(x) = a0f(x) + a1f(x− 1) + a−1f(x+ 1). (3.12)

Recovering:
√
D h1,inv ∗ d(x) =

= d(x) +
∑∞

m=1
(−1)md(x−m)

|z−|m +
∑∞

m=1 (−1)md(x+m)|z+|m =

= a0

(
f(x) +

∑∞
m=1

(−1)mf(x−m)
|z−|m +

∑∞
m=1 (−1)mf(x+m)|z+|m

)
+

a1

(
f(x− 1)− |z−|

∑∞
m=2

(−1)mf(x−m)
|z−|m − |z+| f(x)− |z+|

∑∞
m=2 (−1)mf(x+m)|z+|m

)
+

a−1

(
f(x+ 1)− f(x)

|z−| −
1

|z−|
∑∞

m=2
(−1)mf(x−m)

|z−|m − 1
|z+|

∑∞
m=2 (−1)mf(x+m)|z+|m

)
=

=
(
a0 − a1 |z+| − a−1

1
|z−|

)
f(x) +

(
a0 − a1 |z−| − a−1

1
|z−|

)∑∞
m=1

(−1)mf(x−m)
|z−|m +

+
(
a0 − a1 |z+| − a−1

1
|z+|

)∑∞
m=1 (−1)mf(x+m)|z+|m,

(3.13)

where the second equality follows from (3.11); substituting d(x) from (3.12) and re-labeling

summation indexes accordingly, we get the next equality; combining terms and rearranging, we

get the last equality. Remember that the above formulas were derived under assumptions on

parameters where z−, z+ are both real and negative roots of W . Thus

a0 − a1 |z−| − a−1
1

|z−| = a0 + a1z+ + a−1
1
z−

= 0;

a0 − a1 |z−| − a−1
1

|z+| = a0 + a1z+ + a−1
1
z+

= 0;

a0 − a1 |z+| − a−1
1

|z−| = a0 + a1z+ + a−1
1
z−

=

= a0 + a1z+ − (a0 + a1z−) = a1 (z+ − z−) =
√
D.

(3.14)

Combining (3.13), (3.14) we conclude that hereby the image is completely recovered !

h1,inv ∗ d(x) = f(x). (3.15)

Examples. Let f(x) be functions with graphs given respectively, by Figures 6 (a) and 7 (a),

illustrating, respectively, continuous and discontinuous with the one-sided limits cases. Let d(x)

be given by (3.12), with a0 = 0.6, a1 = 0.15, a−1 = 0.25. Plots of d(x) are given, respectively, by

Figures 6 (b), 7 (b). Let

fr(x;M) := d(x) +
∑M

m=1(−1)m
(

d(x−m)
|z−|m + d(x+m) |z+|m

)
(3.16)

be an approximate reconstruction, with an infinite sum replaced by a sum of the first M terms.

Plots of the approximate reconstruction fr(x;M) with M = 1, 2, 4, 8 are given, respectively, by

Figures 6 (c-f), 7 (c-f). Note that in both examples, the true image was completely restored at

M = 8.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. (a) True image f(x), (b) blurred image d(x), and (c-f) M terms approximations to the

deblurred image fr(x,M),M = 1, 2, 4, 8
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(a) (b)

(c) (d)

(e) (f)

Figure 7. (a) True image f(x), (b) blurred image d(x), and (c-f) approximations to the deblurred

image fr(x,M),M = 1, 2, 4, 8
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4 Regularized optimization technique

Let’s perform a short recap of the main problem investigated in this report. Given a linear

functional H and a known function g(x, y) (representing the degraded/detected image), the goal

is to recover the unknown function f(x, y) (modeling the original image) from the following

functional equation:

g(x, y) = H[f ](x, y) + n (4.1)

where n is an additive noise, typically independent of the signal f .

This section is devoted to the designation of several regularization techniques in order to

circumvent the aforementioned “division by zero” problem. Sections 4.1 and 4.2 study the original

problem without noise (n = 0), and section 4.3 addresses the noisy case (n ̸= 0). It is worth

emphasizing that the regularization methods carried out in this section will not regularize the

PSF h directly, and we defer the discussions of subsequent smoothing approaches (acting directly

on the PSF or its Fourier transform) to section 5.

4.1 Tikhonov regularization

Contributed by Fei Cao and Binan Gu

We note that identity (4.1) with n = 0 can be rewritten as

g(x, y) =

∫∫
R2

f(x0, y0)H[δ(x− x0, y − y0)] dx0 dy0, (4.2)

where the function H[δ(x− x0, y − y0)] := H[δ(· − x0, · − y0)](x, y) is termed as the point spread

function (PSF) in image processing literature. Since H is a linear functional, we can identify it

(via the Riesz representation theorem) with some h (in the dual space that contains H), meaning

that for each pair (x, y) ∈ R2 there exists a unique h for which

H[f ](x, y) =

∫∫
R2

f(x0, y0)h(x, y;x0, y0) dx0 dy0.

Thus we can reformulate the identity (4.2) as

g(x, y) =

∫∫
R2

f(x0, y0)h(x, y;x0, y0) dx0 dy0. (4.3)

In practice, the parametric function h(x, y;x0, y0) takes the form of a kernel which we write as

h(x, y;x0, y0) = h(x− x0, y − y0). Consequently, we arrive at the following simplified equation

g(x, y) = [f ∗ h](x, y) (4.4)

from which one can deduce the Fourier transform of the original image:

F [f ](ξ, η) =
F [g](ξ, η)

F [h](ξ, η)
. (4.5)

The major concern lies in the possibility of having a vanishing F [h](ξ, η) (Fourier transform of

the PSF, also known as the optical transfer function (OTF)) in the Fourier domain (ξ, η) ∈ R2,

which renders us a notorious “division by zero” issue that must be addressed carefully for practical

applications.

Tikhonov regularization is a popular method originally designed to solve certain (possibly)

ill-posed inverse problems. We introduce a (typically small) hyper-parameter ε > 0 and try to

solve the following (regularized) minimization problem:

fε = argmin
f∈L2

{
∥g −H[f ]∥2L2 + ε ∥f∥2L2

}
:= argminLε[f ]. (4.6)
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ε Benchmark 10−2 10−3 10−4

SNR 82.4 21.2 22.1 19.2
Sharpness 53 79 104.5 116.6

Table 1. Performance of the Tikhonov regularized image recovery tested against the benchmark

statistics, using various values for the hyper-parameter ε.

We emphasize that the choice of ε = 0 leads to the same inverse problem as proposed in the ref-

erence notes (whose closed-form solution in the Fourier domain (4.5) suffers a troubling “division

by zero” issue). By a standard perturbation argument requiring that

Lε[f + v] ≤ Lε[f ]

for any negligible perturbation v, we deduce that a minimizer fε of Lε[·] must satisfy the following

normal equation

H∗[g −H[fε]] = ε fε (4.7)

with H∗ the adjoint of H. We now recall that the linear functional H is identified via Riesz

representation with some h in the previous section (i.e., H[f ] = f ∗ h). Assuming further that

the kernel h is even in both variables, i.e.,

h(−x,−y) = h(x, y) (4.8)

for all (x, y) ∈ R2, then H∗ = H (meaning that the linear operator H is self-adjoint) and the

equation (4.7) simplifies to

H[g]−H2[fε]] = ε fε (4.9)

or equivalently

g ∗ h− (fε ∗ h) ∗ h = ε fε. (4.10)

Lastly, we take the Fourier transformed version of (4.10) to conclude that

F [fε](ξ, η) =
F [g](ξ, η)F [h](ξ, η)

ε+ |F [h](ξ, η)|2
. (4.11)

In general, if we drop the symmetric assumption (4.8) on h then the resulting expression (4.11)

for F [fε] becomes

F [fε](ξ, η) =
F [g](ξ, η)F [h](ξ, η)

ε+ |F [h](ξ, η)|2
. (4.12)

where a denotes the complex conjugate of a ∈ C.
We emphasize here that the expression for F [fε](ξ, η) avoids the “division by zero” due to the

presence of the hyper-parameter ε > 0 in the denominator of the right-hand side of (4.11), and

it boils down to our previous expression (4.5) when we send ε → 0.

4.2 Control approach

Contributed by Pavel Dubovski

Modified problem: given fobs(x) find f(x) given that

H[f ] = fobs + v (4.13)

with operator H[f ](x) = f ∗ h(x) =
∫
R f(x− y)h(y)dy.

Changes in control v generate the change in solution f .

We consider the inverse/control problem: find v and f which satisfy (4.13).
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(a) Detected image (b) Recovered image (ε = 0.01)

(c) Recovered image (ε = 0.001) (d) Recovered image (ε = 0.0001)

Figure 8. The detected image along with the recovered image using the Tikhonov regularization

technique with varying choices of the regularization parameter ε > 0.

Variation of (4.13) yields H[δf ] = δv. We introduce the following functional to be minimized

inf α∥v∥2 + β∥f∥2 + ∥H[f ]− fobs∥2, α, β > 0.

The variational approach yields

α⟨v, δv⟩+ β⟨f, δf⟩+ ⟨H∗(H[f ]− fobs), δf⟩ = 0. (4.14)

We consider the adjoint equation

H∗[q] = p

and take an inner product of the adjoint equation by δf , H[δf ] = δv by q and obtain

⟨q, δv⟩ = ⟨p, δf⟩.

We compare with (4.14) and find that if

p = βf +H∗(H[f ]− fobs),



18

then we arrive at the control equation

αv + q = 0.

We are in position now to state the following algorithm.

Algorithm We pick up the initial approximations f0 = fobs, v0 = 0.

Step 1. Find fn from the direct equation

H[fn] = fobs + vn

Step 2. Find qn from the adjoint equation

H∗qn = βfn +H∗(H[fn]− fobs).

Step 3. Find vn+1 from control equation:

vn+1 = vn − τ(αvn + qn).

Parameter τ must be positive and less than 1
α .

We will carry out the computations according to this algorithm in future work and look forward

to verifying that this control approach can lead to an accurate deblurring as an alternative to the

deconvolution techniques explored in other parts of this report. We will further establish the rate

of convergence of this method so as to compare with existing benchmarks provided by [5, 6, 11].

4.3 Wiener deconvolution

Contributed by Trishala Thakur, Tyler Fuller, Binan Gu

An additive noise n, independent of the signal f , as shown in (4.1), accounts for additional

external influences on the image quality; for instance, images taken by space telescopes are almost

always affected by atmospheric disturbances. More precisely, using the results from section 4.1,

this noise-perturbed problem is given by

g = h ∗ f + n (4.1)

where n is a random variable with mean zero and finite variance, i.e.,

E [n] = 0, σ2 := E |n|2 < ∞

Taking a Fourier transform of both sides, we obtain

F [g] = F [h]F [f ] + F [n] (4.2)

Because of the random nature of n, we cannot naively conclude that

f = F−1

[
F [g]−F [n]

F [h]

]
(4.3)

Instead, we propose the following mean square error minimization problem,

min
r∈L2

E |f − r ∗ g|2 , (4.4)

we find a minimizing r where f̃ := r ∗ g is considered as an approximation of f . Once we find r,

we compute once again the Fourier transform

F
[
f̃
]
= F [r ∗ g] = F [r]F [g] =⇒ f̃ = F−1 [F [r]F [g]]

and obtain the approximate solution f̃ .
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To solve the minimization problem in (4.4), we appeal to the Plancherel theorem (or Parseval’s

identity); that is, the Fourier transform is an isometry with respect to the L2-norm, and recast

the problem in Fourier space,

min
r∈L2

E |f − r ∗ g|2 = min
R∈L2

E |F −RG|2 (4.5)

where the capitalized variables represent the Fourier transform of the lowercase ones. We readily

observe that the recast minimization is a standard least square problem (see [3] for details on

the solution technique).

The optimal least square approximate image f̃ to (4.5) satisfies

F
[
f̃
]
=

F [g]

F [h]

1

1 + a2

|F [h]|2
(4.6)

where we have defined a hyper-parameter a = σ2

E|F [f ]|2 , known as the reciprocal of the signal-to-

noise ratio. In practice, both the numerator and the denominator in a are unknown and thus

need to be estimated based on a proposed model for the noise term n.

We tested various hyper-parameter values, and the results of these simulations are illustrated in

Figure 9. There, we observe that Wiener deconvolution generally provides better results compared

to the NNPD method in terms of sharpness of the object and the slightly reduced noise level

caused by division by zero.

(a) Original Image (with noise)

(b) Reconstruction using Wiener
deconvolution with optimal hyper-
parameter a (c) Reconstruction using NNPD

Figure 9. Comparison of different image reconstruction methods.

5 Smoothed point spread function (PSF)

This section proposes two modifications to the continuous analog of the NNPD: 1) the Truncated

Gaussian Filter (TGF) and 2) the Super-Gaussian Optical Transfer Function (OTF). The benefit

of considering continuous versions of the PSF is that the Fourier transform of the proposed filters

can be computed analytically and thus directly numerically evaluated.

5.1 Truncated Gaussian filter

Contributed by Binan Gu and Burt Tilley

In this section, we study the continuous analog of the discrete PSF proposed in (1.4), with an

additional consideration that the Gaussian filter is compactly supported due to the boundedness
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of an image. More precisely, a Truncated Gaussian Filter (TGF) is a normalized Gaussian sup-

ported on a compact set in R2, typically a rectangle in image processing. We propose a PSF of

the following form, supported on a centered rectangle of length and width a and b,

PSF (x; a, b, c) = α (c) e−c|x|21{−a≤x≤a,−b≤y≤b}, (5.1)

where the normalizing factor satisfies

α (c) =
c

π

1

erf (
√
ca) erf (

√
cb)

,

and c is the inverse width of the Gaussian and erf (x) is the one-dimensional error function, given

by

erf (x) =
2√
π

∫ x

0

e−t2dt.

One may assume a = b for a simpler adaptation to square images, but we keep a and b as

general tunable parameters. The Optical Transfer Function (OTF), obtained by taking a Fourier

transform of this PSF (viewed as the product of a Gaussian and an indicator function), is the

convolution of a Gaussian and the sinc function, i.e.,

OTF (ξ1, ξ2) = α (c)F
{
e−c|x|2

}
∗ F

{
1{−a≤x≤a,−b≤y≤b}

}
(5.2a)

= α (c)

(
π

c
e−

π2(ξ21+ξ22)
c

)
∗
(

1

π2

sin (2πaξ1) sin (2πbξ2)

ξ1ξ2

)
(5.2b)

Analytically, the 2D Fourier transforms and their convolutions in eq. 5.2b are supported on

the entire R2 but must be truncated for computation. We set the frequency variables (ξ1, ξ2) ∈
[−1, 1]

2
(based on the Nyquist frequency), with a common mesh size ∆ξ for each dimension,

with ∆ξ small enough such that the grid is kM × kN for k > 1 (where k = 1 corresponds to the

dimension of the original detected image). We use the middle M × N grid points in frequency

space (to match the image size) to perform the deconvolution step

f (x1, x2) = F−1

{
F [g] (ξ1, ξ2)

OTF (ξ1, ξ2)

}
.

In Figures. 10a-10d, we provide a few examples of the Truncated OTF at various resolutions,

with an intended image of size 32-by-32. Provided a frequency domain of (ξ1, ξ2) ∈ [−1, 1]
2
, ∆ξ

must be smaller than 1
16 so that the 32-by-32 image fits the meshgrids (exactly with ∆ξ = 1

16 ).

If a smaller ∆ξ is chosen, then the image domain is strictly embedded in the interior of the

frequency domain. Figure. 10a uses a coarse mesh size of ∆ξ = 1
16 , producing a truncated OTF

showing both the Gaussian peak at the origin and the sinc wave, admitting several zeros away

from the origin. In Figure. 10b, we use ∆ξ = 1
32 , a mesh size twice as fine, which effectively

embeds the image on
[
− 1

2 ,
1
2

]2
(see the new limits of the axes). The zeros are still present near

the origin. As we decrease ∆ξ through Figures. 10c-10d, the zeros disappear as the truncated

OTF has more Gaussian features than sinc ones. For larger images (more pixels), we may increase

a and b to accommodate for the expanded real domain.

The convolution in the OTF is computed by a Gauss-Hermite quadrature with three query

points. We have four parameters, a, b, and c, for the TGF and the mesh size ∆ξ that determines

the resolution of the OTF in frequency space. The TGF parameters may be tuned so that a

combined metric involving the relative L2-error between the detected and filtered image, signal-

to-noise ratio, and sharpness is optimized, an idea to be considered in future work. Furthermore,

the peak of the Gaussian can be tuned via c, which can be inferred from the measurement values

of the discrete Gaussian used in the NNPD.
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(a) ∆ξ = 1
16 (b) ∆ξ = 1

32

(c) ∆ξ = 1
64 (d) ∆ξ = 1

128

Figure 10. Truncated OTF per eq. 5.2b for an intended 32-by-32 image at various resolutions of

the mesh grid: (a) ∆ξ = 1
16 (b) ∆ξ = 1

32 (c) ∆ξ = 1
64 and (d) ∆ξ = 1

128 . For all sample plots,

Gaussian parameters per eq. 5.1 are fixed: a = b = 2 and c = 15.

Figure 11. TGF with parameters a = b = 0.25, c = 15

In Figures. 11-14, the TGF parameter values are chosen so that the improvement across various

values of ∆ξ is visible. In particular, figure. 12 demonstrates the effect of under meshing at

∆ξ = 1
128 that barely preserves the structure of the original image, but the improvement is stark

at finer mesh sizes. A similar effect can be seen in figure. 13 where ∆ξ = 1
512 is considered too

small because the image size has increased from figure. 12.
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Figure 12. a = b = 0.5, c = 15, image size 246-by-245.

Figure 13. Same TGF parameters as Figure 12, image size 441-by-481.

5.2 Regularization of the optical transfer function (OTF)

Contributed by Fei Cao

Recall the formula (4.5) for the Fourier transform of the original image:

F [f ](ξ, η) =
F [g](ξ, η)

F [h](ξ, η)
. (5.3)

To overcome the possibility of a (possibly) vanishing OTF in the denominator, we can also try to

regularizing the OTF directly. For instance, one can employ a parametric “Gaussian-like” OTF,

F [h](ξ, η) = e−ξγ−ηγ

(5.4)

with γ ∈ R being a tunable parameter or an (inverse) polynomial-type OTF of the form

F [h](ξ, η) =
1

1 + γ1 ξγ2 + γ1 ηγ2
(5.5)
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Figure 14. Same TGF parameters as Figure 12, image size 820-by-820.

in which γ1 and γ2 are tunable parameters. Numerical experiments suggest that a marginal im-

provement over the classical benchmark can be achieved after careful tuning of hyper-parameters.

Figure 15. Left: The recovered image using the NNPD OTF (which consists of linear combina-

tion of sin and cos functions); Right: The recovered image using the smoothed OTF of the form

(5.5) with γ1 = 1 and γ2 = 0.01.

6 Sparse deblur dictionary learning

Contributed by William Thompson, Tyler Fuller, Clayton Coonrod

During the workshop, we applied a non-classical method of debluring that was based on the

reconstruction of the original image using some over-complete set, aka dictionary.

The article titled ”Direct Sparse Deblurring” by Yifei Lou, Andrea L. Bertozzi, and Stefano

Soatto developed a deblurring algorithm that leverages the sparse characteristics of natural

images, avoiding the numerical challenges associated with traditional methods that solve ill-

posed inverse problems. Deblurring aims to reverse the effects of blurring caused by convolution

with a known kernel (that might have some parameters to fit). The proposed method operates

through the following steps: creating an over-complete basis (dictionary) for the original image,

performing sparse coding on the blurred image using the blurred version of the dictionary, and

reconstructing the deblurred image using the coefficients obtained from sparse coding. This
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Figure 16

approach avoids solving an inverse problem directly, instead focusing on a generative model

approach, sometimes referred to as ”analysis by synthesis”.

An image patch is assumed to be represented sparsely in a chosen dictionary. The blurred image

can be expressed as a combination of blurred basis elements with the same sparse coefficients

that represent the original image. This forms the basis of the direct sparse deblurring method.

The deblurring algorithm minimizes the sparse representation error for all local patches. The

optimization involves solving for the sparse coefficients that best approximate the blurred image

with respect to the blurred dictionary. The reconstructed image is then obtained by combining

these coefficients with the original (non-blurred) dictionary elements.

In practical implementation, the image is divided into patches to manage computational com-

plexity. A refined approach ensures that the blurred and clear basis elements are consistent in

their domain sizes to address boundary effects. The algorithm includes steps for solving the

coefficients from the measured image and stitching the patches to form the deblurred image.

Weighted averaging is used to combine overlapping patches, with weights chosen based on the

sparsity of their representation, promoting better reconstruction quality.

The effectiveness of the method depends on the coherence of the dictionary. Highly coherent

dictionaries make distinguishing between similar atoms difficult for the sparse coding algorithm,

affecting the deblurring quality. The averaging process for overlapping patches can degrade the

reconstruction quality. Future work may focus on improving this aspect by using partitioning

strategies to minimize boundary artifacts.
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Figure 17

7 Conclusion and discussions

7.1 Summary of Results

Image deblurring is a classical problem still being studied by modern approaches. In this report,

we explored several methods based on Laplace transform and its inversion technique, Cauchy

integration via a translational basis and Fourier Transform, regularized optimization, stochastic

optimization, optimal control, point spread function smoothing, and dictionary learning. Among

these approaches, direct inversion methods such as the Weeks’ method (one of the Laplace

transform-based methods) and Cauchy integration assume either the original signal or the point

spread function has an underlying basis whose linearity structure can aid in the inverse trans-

form. The fixed Talbot’s method works directly with contour choices in contour integration as a

numerical inversion method. Indirect inversion approaches, such as regularized optimization, the

optimal control approach, and the Wiener deconvolution, recast the deblurring as a minimiza-

tion problem that utilizes the rich theory of constrained optimization; however, these methods

still suffer from the introduction of hyperparameters, which require further tuning in practice.

Furthermore, the original discrete NNPD approach inspired us to work directly in the Fourier

space, replacing the Optical Transfer Function (the Fourier transform of the PSF) with either a

continuous kernel truncated at the image boundary or a modified “Super-Gaussian”-like kernel

with a couple of added parameters. All methods in this report have shown promising improve-

ment in sharpness and signal-to-noise ratio, reduced computational cost, and improved accuracy,

providing fertile ground for future directions.

7.2 Future Directions

Many great ideas did not come to fruition within the workshop’s short time frame but are

nevertheless potential future directions to pursue. Some of the proposed ideas are already listed

in the individual sections above. We discuss a few key ideas that are realizable in the short term.

The fixed Talbot’s method (per section 2.2) has proven to be a robust numerical inversion

of the Laplace transform in the test examples. At the same time, the only drawback occurs

when the integrand contains undesirable branch cuts, which can be ameliorated by selecting an

appropriate basis for the signal during the forward transform. Secondly, the control approach
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(per section 4.2) is a more general problem than the image deblurring, which may give rise to

more extensive general results that allow more explorations in various forms of the point spread

function. Lastly, as implemented in this report, the OTF smoothing (per section 5.1) operates

on the entire image domain with a few universal parameters. Instead, one may choose these

parameters based on the local information and patch together the image across different parts of

the image, a process readily parallelizable without incurring additional computational time. We

look forward to carrying out these directions with each subgroup’s faculty members and graduate

students.
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