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Processing Manifold-Valued Images
By Ronny Bergmann, Friederike 
Laus, Johannes Persch, and 
Gabriele Steidl

The mathematical notion of a mani-
fold dates back to 1828, when Carl 

Friedrich Gauss established an important 
invariance property of surfaces while prov-
ing his Theorema Egregium. In his habili-
tation lecture in 1854, Bernhard Riemann 
intrinsically extended Gauss’s theory to 
manifolds of arbitrary dimension, such 
that they are not dependent upon the 
embedding in higher dimensional spaces. 
This is now called a Riemannian mani-
fold. Modern image acquisition methods 
are able to capture information that is no 
longer restricted to Euclidean spaces but 
can be manifold-valued. Such imaging 
methods include the following:

– Interferometric Synthetic Aperture 
Radar (InSAR), used in geodesy and 
remote sensing where each image pixel is 
on the circle 1

– Diffusion-tensor magnetic resonance 
imaging (DT-MRI), which produces imag-
es with values in the manifold of sym-
metric, positive, definite 3 3´  matrices 

SPD(3), thus mapping directional diffusion 
processes of molecules—mainly water—in 
biological tissues

– Electron Backscatter Diffraction 
(EBSD), which analyzes crystalline mate-
rials where the images have pixels in the 
group of rotations SO(3) modulo the crys-
tal’s symmetry group.

Images produced by these techniques are 
depicted in Figure 1. Furthermore, mani-
fold-valued images arise when working in 
color spaces that are more adapted to human 
color perception than the RGB space, such 
as HSI (hue, saturation, intensity) or CB 
(chromaticity, brightness). Here, we deal 
with the (product)-manifolds 1´ ´ 

 
and 2´,  respectively.

Processing manifold-valued signals and 
images proposes new challenges in image 
processing that affect classical tasks like 
denoising, inpainting, and segmentation. 
In the real-valued case, variational meth-
ods—convex optimization in particular—are 
well adapted to such large-scale problems. 
Other successful approaches include nonlo-
cal patch-based methods, which rely on 
an image self-similarity assumption, and 
recently-developed learning methods. What 

follows offers a brief overview of recent 
results in manifold-valued image processing, 
obtained by attempting to generalize results 
from the real to manifold-valued setting.

Tiny inaccuracies that result in noisy data 
are inevitable when measurements are taken, 
regardless of whether the measurements are 
manifold-valued. Modeling an image as a 
realization of some random variable, whose 
distribution reflects the circumstances under 
which the image is taken, is a common 
method to account for this randomness. In 
the real-valued case, the standard approach 
assumes that the noise is additive, white, 
and Gaussian, which is asymptotically justi-
fied by the Central Limit Theorem. Much 
effort has been spent denoising real-valued 
images corrupted with white Gaussian noise, 
but the situation completely changes with 
manifold-valued images. The definition of 
a Gaussian distribution is not canonical on a 
manifold, and different attempts—general-
izing different characterizing properties of 
the real-valued normal distribution—appear 
in the literature.

Current state-of-the-art denoising meth-
ods for real-valued images include nonlocal 

Figure 1. Manifold-valued images acquired with different devices, yielding data values given on the following: 1a. The circle 1, colored using the 
hue [11]. 1b. The manifold of symmetric positive definite 3 3´  matrices, illustrated using their eigenvalues and eigenvectors to draw an ellipsoid 
[3]. 1c. Orientations SO(3), where the orientation modulo the phase is mapped onto a colorized sphere. 1c courtesy of the Institute of Materials 
Science and Engineering at the University of Kaiserslautern.
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Figure 2. Asymptotic sparsity and asymptotic incoherence. 2a. Wavelet coefficients of 
the Shepp-Logan phantom, arranged according to increasing scale. 2b. Coefficients of the 
flipped phantom. 2c. Radial sampling map in k-space. The square annulus regions denote 
the essential frequency concentration of wavelets at a given scale. 2d. Absolute values of 
the matrix U F= Φ,  with larger and smaller values corresponding to lighter or darker colours 
respectively. Vertical lines indicate the wavelet scales and horizontal lines indicate the annu-
lar frequency bands. Image credit: Alexander Bastounis, Ben Adcock, and Anders C. Hansen.

In an article on page 5, Alexander Bastounis, Ben Adcock, and Anders C. Hansen describe 
recent compressed sensing applications that yield significant benefits to imaging.

See Manifold-Valued Images on page 3

Unifying Different Perspectives: 
From Cubism to Convolution
By Rujie Yin

Visual perception as a fundamental sen-
sation that shapes our understanding 

of the world has long been of interest to 
both science and art. Neural activities relat-
ed to various stages of visual perception are 
associated with different areas of the visual 
cortex. Objects are first “observed” by cells 
tuned to elementary stimulus. In subsequent 
stages, specific regions of the brain—which 
handle more complex structures—are acti-
vated depending on what one is looking 
at; faces and Chinese characters are very 
different! Neuroscientists still do not suf-
ficiently understand the integration of ele-
ments detected in early stages to create the 
concept of an object. On the other end of the 
spectrum, artists are experimenting with the 
same subject. Cubism is one avant-garde art 
movement exploring the relation between 
concept formation and perception. Cubist 
paintings usually depict objects in parts, 
from multiple viewpoints simultaneously 
(see Figure 1, on page 4). It is difficult (but 
not impossible) for spectators to “picture” 
the objects in these paintings by unifying 
visually-observed pieces in their mind, like 
solving a virtual puzzle.

Image processing, during which an image 
is represented as a mathematical object 
whose properties reflect its characteriza-
tion, presents a similar puzzle. Different 
representations typically provide varied yet 
complementary interpretations of an image. 
A variety of proposed image models have 
successfully generated high-performance 
algorithms, but uniting these models poses 
a challenge — not unlike creating a cubist 
painting. I will subsequently discuss how 
convolution, a well-known mathematical 
operation, can effectively combine two dis-
tinct classes of image models.

Many image models fall into two types of 
representations: local and nonlocal, which 
offer intrinsically different viewpoints. 
Local image representations focus on the  
characterization of local features present 
in images. Wavelet decomposition, during 
which wavelets serve as the elementary 
stimuli in our visual cortex, is perhaps the 
most classical local image representation. 
It is widely observed that, given a wave-
let basis, an image can often be well-
approximated by only a few basis elements 
(wavelets). Furthermore, the wavelets are 
both locally-supported and shift- and scale-

See Cubism on page 4
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A Multiprecision World
Traditionally, floating-point arithmetic 

has come in two precisions: single 
and double. But with the introduction of 
support for other precisions, thanks in 
part to the influence of applications, the 
floating-point landscape has become much 
richer in recent years.

To see how today’s multiprecision world 
came about, we need to start with two 
important events from the 1980s. The IEEE 
standard for binary floating-point arithme-
tic was published in 1985. It defined single 
precision (32-bit) and double precision (64-
bit) floating-point formats, which carry the 
equivalent of about eight and 16 significant 
decimal digits, respectively. This led to the 
relatively homogeneous world of floating-
point arithmetic that we enjoy today, which 
contrasts starkly with the 1970s, when 
different computer manufacturers used dif-
ferent floating-point formats and even dif-
ferent bases (hexadecimal in the case of 
some IBM machines). The second impor-
tant event in the 1980s was the introduc-
tion of the Intel 8087 coprocessor, which 
carried out floating-point computations in 
hardware (in conjunction with an 8086 pro-
cessor) and enabled much faster scientific 
computations on desktop machines. Intel 
went on to incorporate the coprocessor into 
the main processor in the Pentium and sub-
sequent series of processors.

Throughout the 1990s, we had the choice 
of working in single or double precision 
arithmetic in most computing environ-
ments. Single precision did not intrinsically 
run faster than double precision on Intel 
chips, but its lower storage requirement 
could lead to speed benefits due to better 
use of cache memory.

The picture started to change 
in 1999 when Intel introduced 
streaming single instruction, 
multiple data (SIMD) exten-
sions (SSE), which allowed 
single precision arithmetic to 
execute up to twice as fast as double. A few 
years later, the Cell processor, designed by 
Sony, Toshiba, and IBM for use in the Sony 
PlayStation 3 gaming system, offered single 
precision arithmetic running up to 14 times 
faster than double precision, thus present-
ing interesting opportunities for scientific 
computing. These developments directed 
efforts towards algorithms with the ability 
to exploit two precisions to solve a prob-
lem faster or more accurately than just one 
precision. The concept of such algorithms 
is not new. Up until the 1970s, many com-
puters could accumulate inner products at 
twice the working precision and no extra 
cost, and the method of iterative refinement 
for linear systems—first programmed by 
James Hardy Wilkinson on the Pilot ACE in 
1948—exploited this capability to improve 
the accuracy of an initial solution com-
puted with LU factorization. A new form 
of iterative refinement that employs single 
precision to accelerate the double precision 
solution process was developed in [3].

In the last few years, the advent of half 
precision arithmetic (16 bits) has enriched 
the floating-point landscape. Although the 
2008 revision of the IEEE standard original-
ly defined it only as a storage format, manu-
facturers have started to offer half precision 
floating-point arithmetic in accelerators 
such as graphics processing units (GPUs). 
Half precision offers both speed benefits (it 
operates up to twice as fast as single preci-
sion, though only the top-end GPUs attain 
the factor 2) and lower energy consumption. 
The main application driver for half preci-
sion is machine learning (and in particular, 
deep learning), where algorithms have been 
found empirically to perform satisfactorily 

in low precision.
I am not aware of any 

rigorous analysis that 
explains the success of 
machine learning algo-
rithms run in half—or 
even lower—precision. 

One possible explanation is that we are 
solving the wrong optimization problem 
(as the correct one is too difficult to solve) 
and thus do not need to solve it accu-
rately. Another is that low precision has 
a beneficial regularizing effect. Yet from 
the traditional numerical analysis point of 
view, half precision is dubious. The usual 
rounding error bound for the inner product 
of two n-vectors contains the constant nu, 
where u is the unit roundoff, so in half 
precision (which has n ≈ × −5 10 4), we 
cannot guarantee even one correct signifi-
cant digit in the computed inner product 
once n exceeds 2,048. Indeed, the set of 
half precision numbers is small: there are 
only 61,441 normalized numbers, and the 
spacing between 32,768 and the largest 
number, 65,504, is 32.

People will be tempted to use half preci-
sion as it becomes more accessible in hard-
ware, potentially with serious consequenc-
es if relative errors of order 1 are obtained 
in critical applications. The limitation that 

half precision has a range of only 10 5±  
means that in many problems, one is just 
as likely to obtain NaNs as output (result-
ing from overflow) as completely incorrect 
numbers. This presents work for our com-
munity to better understand the behavior 
of algorithms in low precision, perhaps 
through a statistical approach to rounding 
error analysis instead of the usual approach 
of proving worst-case bounds.

The precision landscape has been get-
ting more interesting at the higher end as 
well. The 2008 IEEE standard revision 
introduced a quadruple precision floating-
point format, which is available almost 
exclusively in software (the IBM z13 pro-
cessor being a rare exception), perhaps 
as a compiler option. Arbitrary precision 
arithmetic is available in several environ-
ments, including Maple, Mathematica, Sage, 
Julia through its BigFloat data type, and 
MATLAB with the Symbolic Math Toolbox 
or the Multiprecision Computing Toolbox 
(Advanpix). Several of these systems utilize 
the GNU MPFR Library, an open source C 
library for multiple precision floating-point 
computations. Having arbitrary precision 
floating-point arithmetic at our fingertips is 
not something many of us are accustomed 
to. I first became intrigued with the pos-
sibility during a visit to the University of 
Toronto (U of T) in the 1980s, when Tom 
Hull introduced me to Numerical Turing. 
Turing was a Pascal-like language devel-
oped in U of T’s Department of Computer 
Science for teaching, and Hull’s Numerical 
Turing augmented it with variable precision 
decimal floating-point arithmetic.

Field-programmable gate arrays, which 
have always been configurable for differ-
ent precisions of fixed-point arithmetic but 
now can additionally support floating-point 
arithmetic, also have a role to play. These 
low-power devices offer the possibility of 
customizing the floating-point format in 
hardware to meet the precision require-
ments of an application.

Once arithmetic of several precisions is 
available (half, single, double, quadruple), 
we want to harness it to compute results of 
the desired accuracy as efficiently as pos-
sible, bearing in mind the relative costs of 
the precisions.1 A natural scenario is itera-
tive methods such as Newton’s method, 
where there may be no point in computing 
iterates accurately in the early stages of 
an iteration when far from the solution; 
increasing the precision during the itera-
tion may reduce execution time. We can 
also ask whether using just a little extra 
precision in certain key parts of an algo-
rithm can bring benefits to the speed or 
accuracy, and whether it can stabilize a 
potentially unstable algorithm. See [2, 5] 
for some recent work along these lines.

1   h t t p s : / / n i c k h i g h a m . w o r d p r e s s .
com/2017/08/31/how-fast-is-quadruple-
precision-arithmetic/

Cartoon created by mathematician John de Pillis.
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See Multiprecision World on page 3
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patch-based approaches, in particular the 
nonlocal Bayes algorithm of Marc Lebrun, 
Antoni Buades, and Jean-Michel Morel [9], 
whose idea was reinterpreted and general-
ized to manifolds in [8]. The proposed 
estimation procedure relies heavily on the 
computation of Riemannian centers of mass 
— counterparts of the classical mean or 
expectation. Numerical examples demon-
strate the excellent denoising performance 
of the proposed estimator for different 
manifolds, including 1,  the sphere 2,  
and SPD(3). Figure 2 illustrates a result 
obtained for an orientation field, i.e., an 2-
valued image. However, these are academic 
examples, and part of ongoing research is 
to examine the acquisition-dependent noise 
models appearing in applications.

Variational approaches that are not 
restricted to denoising generate a restored 
image as a minimizer of some functional 
of the form

J D R( ) ( , ) ( ), ,u u f u= + >λ λ 0

where   is a data-fitting term measuring 
the distance to the given data f ,   is a 
regularization term—also called a prior—
reflecting the assumed properties of an ideal 

(clean) image, and λ > 0  is a factor that 
balances the influence of the regularizer. A 
usual data-fitting term for real-valued imag-
es is the squared Euclidean distance between 
f and u, which is naturally replaced by the 
squared geodesic distance for manifold-
valued images. Choosing appropriate regu-
larization terms is usually more involved; 
selections should ensure a reduction of noise 
in the minimizer and the preservation of the 
image structure. In the Euclidean case, the 
total variation (TV)—proposed by Leonid 
Rudin, Stanley Osher, and Emad Fatemi 
[12]—is demonstrably a powerful, edge-pre-

serving, and convex nonsmooth regularizer. 
Mariano Giaquinta and Domenico Mucci 
[7] used Cartesian currents to investigate 
the notation of TV of functions with values 
on a manifold, while Evgeny Strekalovskiy 
and Daniel Cremers [13] first applied the 
technique to phase-valued images.

In addition to first-order derivatives that 
occur in the classical TV approach, the incor-
poration of higher-order derivatives into the 
model to reduce the staircasing effect caused 
by TV regularization and adapt to specific 
applications is also desirable. The definition 
of second-order spatial differences is not 
straightforward for manifold-valued images. 
Following the idea that the second-order 
difference term in the Euclidean setting 

reads x y z x z y− + = + −2 2
1

2
( )  [2] 

provides a definition on manifolds that uses 
the geodesic distance from the midpoints of 
the geodesics connecting x with z to y.

One can apply Riemannian optimization 
methods to compute a minimizer of the 
resulting functionals  .  These intrinsic 
methods are often very efficient, since they 
exploit the underlying geometric structure 
of the manifold [10]. Various methods have 
been proposed for smooth functions  ,  
ranging from simple gradient descents on 
manifolds to more sophisticated trust region 

methods. Recently, so-called half-quadratic 
minimization methods, belonging to the 
group of quasi-Newton methods and cover-
ing (for example) iteratively re-weighted 
least squares methods, were generalized to 
manifold-valued images [3].

Unfortunately, the TV regularization 
term is not differentiable. However, in 
the Euclidean setting it is convex, mean-
ing that convex analysis tools—includ-
ing powerful algorithms based on dual-
ity theory—are applicable. A prominent 
example is the alternating direction method 
of multipliers (ADMM), which is equiva-
lent to the Douglas-Rachford algorithm. 
Proximal mappings, which one can effi-
ciently compute for special priors appearing 

in Euclidean image processing tasks, are a 
central ingredient of these algorithms.

Several efforts have recently attempted 
to translate concepts from convex analysis 
to manifolds. One can establish a certain 
theory of convex functions on Hadamard 
manifolds, i.e., complete, simply-connected 
Riemannian manifolds of nonpositive sec-
tional curvature, as (for example) SPD( )n  
or hyperbolic spaces. In particular, one can 
introduce the (inexact) cyclic proximal point 
algorithm on these manifolds [1], a method 
that was also used to minimize the functional 
with first- and second-order differences [2]. 
Efficient computation of the proximal map-
ping of second-order differences utilizes the 
machinery of Jacobi fields and is restricted 
to symmetric spaces. Figure 3 shows two 
denoising results employing first- and sec-
ond-order differences. Symmetric spaces are 
characterized by the property that geodesic 
reflections at points are isometries. Since the 
classical Douglas-Rachford algorithm relies 
on point reflections, it was natural to extend 
this algorithm to symmetric Hadamard 
manifolds [4]. However, Hadamard spaces 
do not embody all the nice properties of 
convex analysis. For example, reflections at 
convex sets are not nonexpansive in general, 
and although the parallel Douglas-Rachford 
algorithm shows a very good numerical per-
formance, existing theoretical convergence 
results remain limited to manifolds with 
constant nonpositive curvature.

Finally, an important aspect when working 
with real data is the practical implementabil-
ity of the developed methods and algorithms. 
In the spirit of reproducible research, several 
groups provide their software and toolboxes, 
e.g., the manifold-valued image restoration 
toolbox MVIRT,1 the manifold optimization 
Manopt package2 [5], and toolboxes focus-
ing on specific manifolds, such as the MTEX 
toolbox3 for EBSD images. All of these 

1  Available open source at www.mathematik.
uni-kl.de/imagepro/members/bergmann/mvirt/

2  Available open source at manopt.org
3  Avaiable open source at mtex-toolbox.

github.io/

packages are available in MATLAB, making 
it possible to test one’s own ideas and enter 
this active field of research.
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Figure 2. Denoising of an artificial 2-valued image by a patch-based method. Image courtesy of [8].

Figure 3. Denoising and inpainting of manifold-valued images by a variational method. 3a and 3b courtesy of [2], 3c and 3d courtesy of [3].

Manifold-Valued Images
Continued from page 1

Multiprecision World
Continued from page 2

If we aim to achieve a given fairly low 
level of accuracy or residual with an itera-
tive method, say t  bits, we can ask what 
the best choice of precision (p t>  bits) is 
in which to run the computations. It turns 
out that for Krylov methods (for exam-
ple), the number of iterations can depend 
strongly on the precision [4], meaning that 
the fastest computation might not result 
from the lowest precision that achieves the 
desired accuracy.

SIAM News readers may remember “A 
Hundred-dollar, Hundred-digit Challenge” 
announced by Nick Trefethen in January 
2002. That challenge asked for 10 problems 
to be solved to 10-digit accuracy. Although 
high precision arithmetic could be used in 
the solutions as part of a brute force attack, 
it turned out to be generally not necessary 
[1]. This example serves as a reminder 
that mathematical ingenuity in the choice 
of algorithm can enable a great deal to be 
done in double precision arithmetic, so one 
should always think carefully before resort-
ing to higher precision arithmetic, with its 
attendant increase in cost. Nevertheless, 
today’s multiprecision computational land-
scape offers great scope for clever exploita-
tion, presenting exciting opportunities to 
researchers in our community.
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invariant in the image domain, meaning that 
they are copies generated by scaling and 
shifting a wavefront pattern known as the 
mother wavelet. Therefore, the pattern of 
the mother wavelet can effectively capture 
local features of images, with the mother 
wavelet’s choice determining the class of 
images being modeled. Dictionary learning 
is a more flexible local image representa-
tion. Instead of prescribing designed local 
patterns like the mother wavelets in wavelet 
bases, a dictionary of representative pat-
terns is learned from fixed-size patches 
extracted from an image or a collection of 
images (a training dataset). These adap-
tive patch patterns are then used to more 
efficiently decompose images consisting of 
patches similar to the training dataset.

A nonlocal image representation, on the 
other hand, focuses on repetition rather 
than decomposition of patterns in an image. 
Such a model is “nonlocal” because similar 
patches from one image are not necessarily 
localized in the image domain. One popular 
nonlocal image model comes from manifold 
learning, where image patches are assumed 
to vary smoothly in the patch space—
forming a manifold—with a small degree 
of freedom (dimension of the manifold) 
compared to patch size (dimension of the 
ambient patch space). In practice, a graph 
whose nodes are sample patches approxi-
mates the patch manifold. Furthermore, 
one can define a diffusion process on the 
patches with respect to their similarity; the 
corresponding (graph) Laplacian induces an 
orthonormal spectral basis that encodes the 
connection between similar patches.

Considering local wavelet decomposition 
and nonlocal manifold learning (spectral 
decomposition) as specific examples, we 
demonstrate a novel way to combine local 
and nonlocal image representations by con-

volution. Given a discrete image f nÎ  , 
its decomposition with respect to a J-level 
(overcomplete) wavelet basis generated by 
the mother wavelet y is

  				     (1)
      

f a i
i j

i j

j= ⋅−∑ ,
,

( )),(y 2

	  
      
i n j J= ⋅⋅ ⋅ = ⋅ ⋅ ⋅1 1, , , , , .

Because the wavelet transform is 
shift-invariant, we can rewrite the above 
decomposition as a sum of convolutions 
Σ
j j

jA ∗ ⋅y( ),2  where A
j

nÎ   is the 
set of wavelet coefficients a

j
.  associated 

with the scaled mother wavelet y( ),2j ×  
with translations in the image domain. 
Alternatively, if we look at patches of size 
2 2J J´  centering on each pixel in the image 
(with periodic boundary extension), we see 
that they are decomposed against the same 
set of basic patterns, i.e., mother wavelets 
in different scales y( ).2j ×  Therefore, two 
similar patches, p ps t

, —centering at s and 
t respectively—have coefficients A sj( )  and 
A t
j
( )  that are close for j J= ⋅⋅ ⋅1, , .  In 

other words, coefficient vectors A
j
 indi-

cate the similarity between patches. On 
the other hand, if we construct a graph 
using all patches p

i
,  then the spectral basis 

f
k
k n, , ,= ⋅⋅ ⋅1  generated from the graph 

Laplacian in manifold learning is an ortho-
normal basis of 



n .  Therefore, we can use 
the spectral basis to decompose the coeffi-
cient vectors A c

j k j k k
=Σ

,
,f  which results 

in a reformulation of the original image 
decomposition (1) as a linear combination 
of convolution components generated from 
the wavelet basis and spectral basis

				     (2)				      
      

f c
j k

j k
k
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In fact, Proposition 1 in [1] shows that 
given any orthonormal basis yj  in ��  
and any orthonormal basis f

k  in n,  

the bases generate a tight 
frame of n  consisting 
of convolution compo-
nents v

j k j k,
:= ∗ψ φ  with 

the frame constant 
;  

v
j k,

 are called convolu-
tion framelets.

Combining a local and 
nonlocal basis results in 
convolution framelets 
with stronger represen-
tation power than either 
basis alone. To observe 
this, we consider a simu-
lated image f containing 
two patterns, y

1
 and y

2
,  

whose supports divide 
the image domain into 
D

1
 and D

2
.  In this case, 

the leading (nontrivial) 
spectral basis vector is 
f
1
1 1

1 2
= −

D D  (up to a 
constant) and the image 
is thus a linear combi-
nation of four convolution framelets 
f = ∗ + + ∗ −0 5 0 5

1 1 0 2 0 1
. ( ) . ( ),ψ φ φ ψ φ φ  

where f
0
1=  is the trivial spectral basis 

vector (up to a constant). A pair of local 
and nonlocal bases can be viewed in the 
form of an autoencoder [1], a type of neu-
ral network whose output is the same as 
input, with dimensionality reduction on the 
input. We also find that applying regular-
ization induced by convolution framelets 
improves the reconstruction result, when 
compared with regularization on the cor-
responding nonlocal basis alone.

In general, one can obtain a convolution 
component v= ∗ψ φ  by distributing the 
pattern y  in the image domain with respect 
to the layout f;  v  inherits the regular-
ity from both y  and f.  Imagine an artist 
working step by step on a painting. Each 
time the artist paints part of the painting 
with a certain type of brush stroke to create 
a specific pattern, he/she adds a “convolu-

Cubism
Continued from page 1

tion component” to the painting. The set 
of patterns to choose from depends on the 
painting’s style and the artist’s skill set, 
whereas the layout of the patterns is more 
closely related to the painting’s content. As 
with art, there are many ways to represent 
an image, yet none is optimal. The con-
volution framelets introduced here present 
our inspiration from classical models to be 
further explored in the future.
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Figure 1. Les Demoiselles d’Avignon, a painting by Pablo 
Picasso, embodies some of the bold traits of Cubism. Public 
domain image.

Downwind, Faster Than the Wind
By Mark Levi

The feasibility of the title’s suggestion 
depends on one’s definition of sail-

ing. A regular sailboat cannot exceed wind 
speed when going dead downwind, i.e., 
exactly in the wind’s direction. But if pro-
pellers and gears are used instead of sails, 
then the seemingly impossible becomes 
possible.1 In principle (and before going 
into any detail), it stands to reason that 
one can harvest energy from the relative 
motion of two media (air and water) and 
use this energy in an engine. The question 
is whether this can be done “in practice.” 
Figure 1 offers a “constructive proof of 
concept.” Two propellers are mounted on 
the boat as shown. Assuming that the boat 
is moving forward, the water propeller—
connected to an electricity generator—
is dragged through the water with speed 
v
boat
,  generating electric power

				     (1)
          

P F v
generated drag boat

= ;

we assume an ideal propeller and no losses. 
Here, Fdrag  refers to the drag on the propel-
ler only — the drag on the hull is neglected. 
The air propeller, on the other hand, pulls 

1  It is referred to as “dead downwind faster 
than the wind” (DDWFTTW), see http://bit.
ly/2w9qEez.

the boat forward and is driven by an electric 
motor, requiring power

P F v F v v
consumed pull airspeed pull boat wind

= = −( ).

		  (2)

Does the power generated by 
the “dragger” suffice to feed 
the puller so as to maintain 
constant speed v v

boat wind
> ?  

The answer is yes, because 
F F
drag pull

=  for constant 
speed, so that (1) and (2) imply

 				     (3)
              

P P
generated consumed

> .

Incidentally, the surplus is exactly what a 
stationary windmill would generate (assum-
ing the same force).

Figure 2 gives an alternative view, from 
the boat’s frame of ref-
erence; the key is that 
the oncoming water is 
faster than the oncoming 
air. And since the power 
genera ted /consumed 
depends on the propel-
ler’s speed relative to the 
medium, higher speed 
means greater power. 
The water propeller 
therefore generates more 

than the air propeller 
consumes.

Of course, the 
above idea is not lim-
ited to boats, and has 
been realized.2

A Solution to Last 
Month’s Puzzle3

Refer to the caption 
of Figure 3, which 
restates the puzzle. 

Imagine a firework exploding at point O 
in Figure 3, sending a myriad of shards 
in all directions, each with the same ini-
tial speed v. Ignoring the air resistance, 
the shards form an expanding circle4 of 
radius vt  at time t.  And the center 

of this circle undergoes free 
fall, descending by gt 2 2/  in 
time t.  The safety parabola is 
the envelope of this family of 
circles, as illustrated in Figure 
4. In other words, the safety 
ceiling serves double duty as 

one envelope of two different families of 

2 https://www.wired.com/2010/06/
downwind-faster-than-the-wind/

3  SIAM News, 50(7), September 2017. 
h t tps : / / s inews.s iam.org/Deta i ls -Page/
parabola-of-safety-and-the-jacobian

4  We are considering a two-dimensional 
cross-section of the three-dimensional picture.

curves. Because of this double role, any 
point T on the envelope is the point of 
tangency with a parabolic trajectory, and 

also with a circle (see Figure 5). Since 
the circle’s center undergoes free fall, 
OC gt= 2 2/ ,  where t  is the time of free 
fall. But this is the same t  as the parabolic 
flight time from O to T, because only one 
shard ever reaches T. This completes the 
solution.

The figures in this article were provided by 
the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

Figure 3. Last month’s puzzle. Show, with-
out calculation, that the normal at the point 
of tangency T intersects the vertical at the 
distance gt 2 2/  from the launch point O, 
where t  is the time of flight from O to T.

Figure 1. Reference frame of the water. In steady motion, 
F F F
pull drag

= = .  Here, F
drag

 is the drag on the propeller; the drag 
on the hull is ignored, as are other “imperfections.”

Figure 2. Reference frame of the boat. Since v v
water airspeed

> ,  we 
have P P

generated consumed
> .

Figure 4. In addition to being the enve-
lope of a family of trajectories, the safety 
parabola is also the envelope of a one-
parameter family of expanding circles with 
a free-falling center.

Figure 5. Solution to the puzzle.

MATHEMATICAL 
CURIOSITIES
By Mark Levi
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From Global to Local: 
Getting More from Compressed Sensing
By Alexander Bastounis, Ben 
Adcock, and Anders C. Hansen

Over the last decade, compressed sens-
ing and sparse recovery techniques 

have had a significant impact on applied 
mathematics and its uses in science and engi-
neering. Compressed sensing applications 
have moved beyond experimentation and are 
beginning to be seen in new implementations. 
An area of particular note is imaging, where 
compressed sensing can be used in magnetic 
resonance imaging (MRI), electron tomogra-
phy, and radio interferometry, among other 
applications. With this in mind, it is timely 
to revisit the mathematics of compressed 
sensing as it pertains to imaging. While the 
standard theory of compressed sensing is 
justifiably celebrated, it falls somewhat short 
of explaining phenomena that result from the 
application of these techniques to imaging. 
In this article, we describe recent work that 
seeks to bridge this gap. As we demonstrate, 
our approach yields significant practical ben-
efits in imaging, allowing researchers to 
further push the limits of performance.

Standard Compressed Sensing
Compressed sensing [3, 4, 6] concerns the 

recovery of an object from an incomplete set 
of linear measurements. In a discrete setting, 
one can formulate this as the linear system

	          y Ax= ,

where y mÎ  is the vector of measure-
ments, x NÎ  is the object to recover, and 
A m N∈ ×

  is the so-called measurement 
matrix. In practice, the number of measure-
ments m is often substantially smaller than 
the dimension N, making recovery generally 
impossible. To overcome this, compressed 
sensing leverages two key properties: spar-
sity of the vector x and incoherence of 
the measurement vectors (rows of A). The 
first property asserts that x should have at 
most s m£  significant components, with 
the remaining components relatively small, 
while the second states that the measurement 
vectors should be (in a formally-defined 
sense) spread out, rather than concentrated 
around a small number of entries.

A popular tool in compressed sensing 
theory is the Restricted Isometry Property 
(RIP). A matrix has the RIP or order 
s if there exists a δ ∈ ( , ),0 1  such that

( ) ( ) ,1 12 2 2

2 2 2
− ≤ ≤ +δ δx Ax x

� � �

         for all s-sparse vectors x.

For instance, if recovery is performed by 
solving the convex basis pursuit problem

 			                 ,
    
min .,
z N

z Az y
∈

=
� �1

subject to

		
(1)

		
then the RIP (with sufficiently small d) 
implies exact recovery of any s-sparse x and 
robustness with respect to perturbations in x 
(i.e., inexact sparsity) or y (i.e., noise).

Typically, the rows of A are drawn 
independently according to some random 
distribution. An elegant demonstration of 
compressed sensing mathematics considers 
Gaussian random vectors. These are inco-
herent, and a signature result asserts that 
A has the RIP with an optimal number of 
measurements m Cs N s» log( / ).

The Flip Test
Imaging is an ideal fit for compressed 

sensing, and one of its original areas of 
application [5, 8, 11]. Though not typically 
sparse themselves, images can be represent-
ed sparsely in certain dictionaries, such as 
wavelets. Furthermore, acquisition devices 
found in many imaging applications are 
modelled with the Fourier transform, which 
tends to be fairly incoherent.

In their seminal work [3], Emmanuel 
Candès, Justin Romberg, and Terence Tao 
demonstrated the benefits of compressed 
sensing by recovering the classical Shepp-
Logan phantom from incomplete Fourier 
measurements. This experiment is repeat-
ed in Figures 1a-1c. The theoretical basis 
for this result is twofold. First, the image 
x NÎ  has a sparse representation in a 
wavelet basis. Specifically, if Φ ∈ ×



N N  
is the matrix of the wavelet transform, then

         	           x c=Φ

for some s-sparse vector of coefficients 
c NÎ  .  Second, the matrix

	        A PF= Φ 		   (2)

has the RIP, where F
N N

∈
×

  is the dis-
crete Fourier matrix and P

m N
∈

×
  is the 

matrix of the sampling map, i.e., P selects 
rows of F according to frequencies shown 

in Figure 1b. As per the theory, x should 
recover to high accuracy as ˆ ,̂x c=Φ  where 
ĉ  is a solution of (1).

To examine the extent to which this theory 
explains the results observed in Figure 1, we 
perform the following experiment, known as 
the flip test [1]. Let Q N N∈ ×



 be a permu-
tation matrix and define the permuted coef-
ficients c Qc

p
=  and corresponding image 

x c
p p
=Φ .  Now let c

p
� be the coefficients 

recovered by solving (1) with y PFx
p

= , 
and define c Q c

p
= −1�

�

 and  x c=Φ .

��

 Since 
permutations do not affect sparsity, coeffi-
cients c

p
 are s-sparse and image x

p
 has an 

s-sparse representation in the wavelet basis. 
Hence, if matrix A has the RIP, one would 
expect both the unflipped reconstruction x̂  
and flipped reconstruction x

�

 to yield similar 
recoveries of the original image x.

Figure 1d demonstrates that this is not 
the case. The flipped reconstruction—in this 
example, the permutation simply reverses the 
ordering of the coefficients—is significantly 
worse than the unflipped reconstruction. We 
therefore conclude that the RIP cannot hold. 
Additionally, since certain sparse vectors are 
recovered better than others, distribution of 
the wavelet coefficients is crucial to recovery.

Classical wavelet theory can intuitive-
ly explain these results. As illustrated in 
Figure 2a (on page 1), wavelet coefficients, 
when arranged according to dyadic scales, 
are sparser at finer scales than coarser 
scales. Moreover, wavelets at a given scale 
are essentially concentrated in square annu-
lar regions of k-space (see Figure 2c). The 
radial sampling pattern samples less densely 
in regions corresponding to the fine scales, 
where the image is more sparse, and more 
densely at coarse scales, where the image 
is less sparse. However, if the coefficients 
are permuted (see Figure 2b), too many 
coefficients exist at fine scales (compared 
to the number of high-frequency samples) 
to ensure good recovery.

A Levels-based Framework
To provide a more comprehensive com-

pressed sensing framework, the approach in 
[1, 2] first replaces the global concepts of 
sparsity and incoherence with suitable local 
quantities. Specifically, let r be a number 
of levels and M= …( , , ),M M

r1  where 
1

1
≤ <…< =M M N

r
,  a vector of spar-

sity levels. These may typically correspond 
to wavelet scales. Rather than a single spar-
sity index s, the new model considers a vec-
tor s = …( , , )s s

r1
 of local sparsities, with 

s
k

 as the sparsity at the kth level. We refer 
to vector x NÎ  with this sparsity pattern 
as ( , )s M -sparse in levels.

Note that permutations performed in 
Figure 2c (on page 1) destroy sparsity in 
levels but not global sparsity. Conversely, 
Figure 2d demonstrates that permutations 
within scales do not unduly alter the recon-
struction quality, thus demonstrating the 
appropriateness of the ( , )s M -sparsity model.

A modified version of the RIP helps ana-
lyze recovery with this model [2]. Matrix A 
has the RIP in levels (RIPL) of order ( , )s M  
if there exists a δ∈( , ),0 1  such that

( ) ( ) ,1 12 2 2

2 2 2− ≤ ≤ +δ δx Ax x
� � �

      for all ( , )s M -sparse vectors x.

Much like the standard RIP, if A has the RIPL 
(for small d

s M,
), then all ( , )s M -sparse vec-

tors can be robustly recovered by solving (1).
Returning to Fourier sampling with wave-

let sparsity, this novel sparsity model calls for 
a new type of sampling, known as multilevel 
random subsampling. The idea is to break up 
the rows of the matrix U into levels [1], fol-
lowing the block-diagonal structure illustrat-
ed in Figure 2d (on page 1). Specifically, we 
introduce sampling levels N= …( , , ),N N

r1
 

where 1
1

≤ <…< =N N N
r

,  and a vec-
tor m= …( , , )m m

r1
 of local numbers of 

measurements. Within each sampling level, 
m
k
 samples are chosen uniformly at random. 

Using this approach, one can show that the 
matrix (2) satisfies the RIPL (in the one-
dimensional setting) [7], provided
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l
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That is, the number of measurements mk  
required to capture each wavelet scale 
should be roughly proportional to the cor-
responding sparsity s

k
.

Applications and Benefits
By refining the sparsity model and sam-

pling procedure, this framework not only 
explains the observations of the flip test 
but also significantly enhances compressed Figure 1. The flip test. 1a. Radial sampling map in k-space. White pixels denote the frequencies 

sampled. 1b. Image ,̂x  recovered using Haar wavelets (PSNR = 28.7dB). 1c. Flipped recovery 
x

�

 (PSNR = 15dB). 1d. Flipped recovery where the flipping is done in levels (PSNR = 29.0dB). 
Image credit: Alexander Bastounis, Ben Adcock, and Anders C. Hansen.

Figure 3. Compressed sensing using 6.25% Fourier measurements at various resolutions. 
Original image courtesy of Andy Ellison, recovered images by Alexander Bastounis, Ben 
Adcock, and Anders C. Hansen.

See Compressed Sensing on page 7
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Convergence in Imaging Sciences
By Eric Miller

For those of us trained in the mathemati-
cal sciences, the notion of convergence 

has a very specific connotation of coming 
together without ever moving apart (you 
know the drill: for every ,  there exists 
a d  such that ….). Here I will focus on a 
more expansive idea of convergence as the 
basis for divergence — an explosion of new 
developments and opportunities, at least 
in the area of imaging sciences. In recent 
years, imaging sciences has experienced a 
rather marked increase in fundamentally 
new advances enabled by the convergence 
of technological capabilities and interests, 
some of which are far removed from the 
world of applied mathematics.

One source of these developments is the 
wealth of novel—and in many cases, chal-
lenging—sensor technologies. The role of 
applied mathematics in sensor data modeling 
and processing is certainly not new. The 
search for hydrocarbons in Earth’s subsur-
face is perhaps the quintessential example 
of a highly successful collaboration, dating 
back to at least the 1970s, between those 

who built sensors (seismic, acoustic, elec-
tromagnetic, etc.) and those tasked with 
modeling and extracting information from 
the resulting data. However, the quantity 
and diversity of sensing technologies that 
have emerged over the past 10 to 15 years 
is unprecedented. This is perhaps most evi-
dent in the general field of optics. From the 
single-pixel camera developed by Richard 
Baraniuk’s group at Rice University to the 
gigapixel camera created by David Brady 
and his team at Duke University, there is no 
shortage of examples that intimately tie a 
new sensing method’s success with a suite 
of associated mathematical models and pro-
cessing methods. Biomedical applications 
are driving many of these advances. Laura 
Waller (University of California, Berkeley), 
Vasilis Ntziachristos (Technical University 
of Munich), and Lihong Wang (California 
Institute of Technology) are developing sens-
ing systems that represent some of the most 
compelling instances of new imaging modal-
ities employing light; in many cases these are 
“mixed” with sound, giving rise to improve-
ments in both computational imaging meth-
ods and the mathematical analysis accompa-

nying the resulting inverse problems. Peter 
Kuchment’s (Texas A&M University) work 
on the analysis of photoacoustic imaging 
problems is a good example.

As physicists and engineers create new 
sensing methods, convergence is also evident 
within the mathematics community proper. I 
would like to focus specifically on the area 
of inverse problems in which a physical 
model stands between the data one possesses 
and the information one desires. In some 

cases, researchers can develop closed form, 
analytical methods for turning sensor data 
into images; the best known among these 
is convolution back-projection (also called 
filtered back projection or Radon inversion), 
originally developed for parallel beam X-ray 
computed tomography and since generalized 
in a variety of mathematically-interesting 
and practically-useful directions, including 
fan beam, cone beam, and helical scan cases. 
Implementation of these methods gener-
ally has low computational overheard, i.e., 
they are “fast.” However, they also tend to 
apply to very specific sensing geometries 
and assumptions about the underlying phys-
ics, a fact that hasn’t deterred their recent, 
rather remarkable expansion. Using sophis-
ticated ideas in microlocal analysis, math-
ematicians and their colleagues—including 
Todd Quinto (Tufts University), Margaret 
Cheney (Colorado State University), and 
Bill Lionheart (University of Manchester)—
have developed interesting methods for 
solving imaging problems when the sensing 
geometry is less than ideal. They have dem-
onstrated the utility of these ideas not only in 
the case of X-ray imaging, but more broadly 
to problems of wave propagation, including 
sonar, radar, and more recently Compton 
scatter imaging. I would be remiss to not 
acknowledge that these recent advancements 
build on an existing base of work dating 
back at least (to the best of my knowledge) 
to the efforts of folks like Gregory Beylkin, 
Douglas Miller, Michael Oristaglio, and 
others who in the 1980s pioneered many 
of these ideas in the context of geophysical 
sensing for hydrocarbon exploration.

A large body of work in the use of 
numerical/computational techniques for 
solving inverse problems also exists. The 
intent is to discretize the physical model 
and pose image formation as the answer 
to a variational problem in which a “good” 
solution balances fidelity to the data against 
information one possesses in addition to the 
data itself, often quantified mathematically 
in terms of some degree of smoothness of 
the image or its derivatives. Interpreting the 
variational problem through a probabilistic 
lens (a technique known for decades) has 
recently produced some rather compelling 
results in the area of uncertainty quantifica-
tion (UQ), where the output is not a single 
image but an entire probabilistic model. 
This model offers insight into not only 
the most likely image but also the level of 
confidence in such an estimate, which is 
valuable information when deciding how 
best to collect new data. The work of 
Omar Ghattas’s group at the University of 
Texas and Youssef Marzouk’s group at the 
Massachusetts Institute of Technology pro-
vide great examples of this line of inquiry.

In contrast to the analytical methods, the 
computational ones do provide more flex-
ibility for addressing nonideal problems in 
which sensors may be arbitrarily located, 
the underlying medium inhomogeneous, 
or the physics not well approximated in a 
“nice” manner. The price is computational: 
this approach typically demands the solu-
tion to a high-dimensional, non-convex 
optimization problem, where both gradi-
ent information and the evaluation of the 

Imaging sciences has seen a recent explosion of computational methods that have significantly 
advanced the field. This figure shows compressed sensing reconstruction of a magnetic resonance 
image. Compressed sensing allows images and signals to be reconstructed from small amounts 
of data. Here, a Split Bregman method is applied to a compressed sensing problem that arises in 
magnetic resonance imaging. Image credit: Tom Goldstein and Stanley Osher, adapted from [1].

See Convergence on page 9
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sensing performance in various imaging 
settings. By following sparsity patterns of 
the wavelet coefficients, one can exploit 
(3) to develop sampling patterns that target 
the sparsity in levels structure and thereby 
enhance reconstruction quality.

We conclude by demonstrating these 
benefits in several practical settings (see 
[10] for further experiments). First, Figure 
3 (on page 5) compares the recovery of a 
magnetic resonance image at various reso-
lutions from Fourier measurements, taken 
according to radial and multilevel sampling 
patterns. Multilevel sampling is consistently 
superior to radial sampling because it better 
targets the image’s sparsity structure. This 
benefit also increases with the resolution, 
since the multilevel sampling pattern aligns 
increasingly well with the wavelet coeffi-
cients’ asymptotic sparsity.

From this latter observation we con-
clude the following: instead of using com-
pressed sensing at lower resolutions to 
reduce acquisition time, one can best real-
ize the full benefits by subsampling at 
higher resolutions and seeking to improve 
image quality. In other words, compressed 
sensing is most beneficial as a resolution 
enhancer. Figure 4 demonstrates this effect. 
For a fixed budget of measurements, sub-
sampling from higher resolutions yields a 

vastly superior reconstruction when com-
pared to full sampling at low frequencies. 
Both Siemens—a leading manufacturer of 
MRI scanners [13]—and [10] further verify 
this phenomenon in a practical MRI setting.

Finally, Figure 5 considers a class of 
problems informally known as compres-
sive imaging [11]. In these problems—the 
applications of which include single-pixel 
[5] and lensless imaging, infrared imaging, 
and fluorescence microscopy [12]—one can 
choose the measurement matrix A, provided 
that its entries are binary. In this case, a 
randomly-subsampled Hadamard transform 
with scrambled columns is a standard choice 
for A. This is a computationally-efficient 
procedure whose performance mimics that of 
random Gaussian sampling; it is near-optimal 
for recovering sparse vectors. It may there-
fore seem surprising that the reconstruction 
quality can be improved. However, as Figure 
5 shows, a multilevel subsampled Hadamard 
transform (without column scrambling) does 
precisely this. Even though wavelet coef-
ficients are sparse, the procedure targets 
the image’s fine details (captured by the 
fine-scale wavelet coefficients) to achieve a 
significant performance gain.

Acknowledgments: The authors thank 
Andy Ellison for the MR images used in 
Figures 3 and 4.1

1  See https://insideinsides.blogspot.co.uk
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Figure 4. Resolution enhancing in MRI. 4a. Original image with small synthetic detail added. 
4b. Linear recovery from the lowest m =2562 Fourier measurements. 4c. Compressed sensing 
with multilevel subsampling using m =2562 measurements. Original image courtesy of Andy 
Ellison, recovered images by Alexander Bastounis, Ben Adcock, and Anders C. Hansen.

Figure 5. Compressive imaging. 5a. Original image. 5b. Recovery from m =16 5. %  scrambled 
Hadamard measurements. 5c. Recovery from m =16 5. %  multilevel subsampled Hadamard 
measurements. Image credit: Alexander Bastounis, Ben Adcock, and Anders C. Hansen.

Compressed Sensing
Continued from page 5



8 • October 2017 SIAM NEWS 

Unhidden Figures
By Karthika Swamy Cohen

I t’s not easy to be a black woman in 
a field dominated by white men. But 

certain factors—impactful mentors, inspir-
ing role models, and supportive academic 
environments—alleviate some of the chal-
lenges. That was the overriding theme in 
the stories of four African American women 
who spoke to a packed auditorium at the 
“Hidden Figures” panel, which took place 
at the 2017 SIAM Annual Meeting, held in 
Pittsburgh, Pa., this July.

“For many of us who are underrepre-
sented, the question is not what encour-
aged you to study mathematics,” Shelby 
Wilson, assistant professor at Morehouse 
College, said. “It’s who encouraged you to 
study mathematics.”

Plenty of whos inspired three of the pan-
elists—current female mathematicians navi-
gating a male-dominated field—including 
fellow panelist and hidden figure Christine 
Darden, a former human computer-turned-
aerospace engineer at NASA’s Langley 
Research Center. Darden’s early findings 
in the 1960s and 70s resulted in a revolu-
tion of aerodynamics design to produce 
low-boom sonic effects. She was featured 
in Hidden Figures: The American Dream 
and the Untold Story of the Black Women 
Mathematicians Who Helped Win the Space 
Race, a 2016 book by Margot Lee Shetterly 
that inspired the film of the same name.

“I’m fortunate enough to have many 
of my whos in the room right now, many 
of them across the country,” Wilson said.  
“And I’m eternally grateful that my grand-
mother and other hidden figures like Dr. 
Darden not so much directly affected me, 
but put my whos into place.”

For Erica Graham, assistant professor at 
Bryn Mawr College, mentors didn’t always 
share the same background or experiences, 

but offered support and encouragement none-
theless. “Although the collection of teachers 
I’ve had over the years was less diverse, I was 
never made to question my right to be where I 
was, so I never did,” Graham said. “The first 
best decision I made was to choose a college 
where I had professors who saw my potential 
and did what they could to draw it out of me. 
And the most important aspect of complet-
ing my graduate education was the support 
network I developed through various mentors 
and fellow graduate students, characterized 
more by collaboration than competition with 
faculty who clearly wanted us to succeed.”

This is not to say that Graham didn’t 
face the challenges that come with being an 
African American woman in a field domi-
nated by people from other racial and ethnic 
backgrounds. However, she tried to ignore 
the differences. “In an environment where 
stereotype threat is very real and imposter 
syndrome runs rampant, it was essential for 
me to shed as much unnecessary weight as I 
possibly could and pretend as though I was 
just any other graduate student,” she said. 
“It wasn’t always easy.”

Talitha Washington, associate profes-
sor of mathematics at Howard University, 
attributes much of her success to three 
mentors who continue to inspire her. “As 
they always say, behind every successful 
woman there are a few good men,” she 
began. Washington spoke about her college 
mentor and primary inspiration behind her 
decision to pursue a Ph.D. in mathematics. 
“I had zero aspirations of going to gradu-
ate school,” she said. “I wanted to work in 
business because that is what I knew. Then 
along came Dr. Jeffrey Ehme, who took me 
on as a student researcher in my senior year 
and forced—yes, he forced me—to apply to 
graduate school. Had he not made me apply, 
I wouldn’t be here today.”

Life in graduate school at the University 
of Connecticut, however, was difficult for 
Washington. “People always asked me 
what country I was from,” she recalled. 
“I was totally confused. I told them, ‘I’m 
from Indiana, is that a country?’” But then 
she found her second supportive men-
tor, Joe McKenna. “I remember sitting 
in his office devastated by the environ-

ment, the workload, and the graduate life,” 
Washington continued. “He told me, ‘You 
outwork anyone here, you are good.’ Those 
words encouraged me to work even harder 
and see it through.”

In 2001, Washington became the first 
African American to graduate from the 
University of Connecticut with a Ph.D. in 
mathematics. Her third noteworthy mentor, 
Ronald Mickens of Clark Atlanta University, 
has helped guide much of her professional 
career. “He gave me a book on difference 
equations when I was an undergrad, but it 
accumulated a little bit of dust,” Washington 
said. “Little did I know that I would dust it 
off a decade later, and we would actually 
begin doing research together.”

Wilson also spoke highly of those who 
inspired her. “I’ve never lacked role models 
and mentors in mathematics,” she said. 
“I’ve had mentors who are mathematical 
biologists like me, women like me, black 
like me, socioeconomically privileged like 
me, and many more who are not like me in 
all the ways that you can think of.” 

See Unhidden Figures on page 9
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cost function require the solution of tens, 
hundreds, or even thousands of discretized 
partial differential equations. Thus, regard-
less of whether one seeks a single solution 
to a variational problem or an entire UQ 
model, the corresponding mathematical 
challenges tend to center around problems 
in numerical linear algebra (including fast 
linear systems solves, preconditioning, and 
reduced order modeling) as well as opti-
mization. Recent studies focus on theory 
and methods that use randomization as a 
tool for reducing system size and hence 
processing complexity.

Moving forward, I have to believe 
that there will be opportunities to bring 
together these two separate approaches 
to imaging—the analytical and the com-
putational—because the strengths of one 
balance the shortcomings of the other. 
Samuli Siltanen (University of Helsinki) 
and his collaborators developed complex 
geometric optics methods for an array of 
inverse problems, most notably electrical 
impedance tomography, which may offer 

a clue to a possible union. Their work is 
based on a rather deep and analytically 
elegant mathematical formulation of the 
physics of the problem, which requires the 
solution to a numerical inverse problem at 
one crucial point. Perhaps these ideas will 
lead to progress in combining some of the 
aforementioned areas. Or maybe a totally 
different variety of insight will be neces-
sary. Regardless of the details, one thing is 
certain: imaging sciences will continue to 
provide relevant, intellectually-stimulating 
problems that allow applied mathemati-
cians and their collaborators to impact the 
field for years to come.
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While influential mentors come in many 
stripes, sometimes it helps when role models 
look like you and have undergone and relate 
to similar life experiences. For this reason, 
Graham talked fondly of the Enhancing 
Diversity in Graduate Education (EDGE)1 
program, intended to increase the number of 
women and minorities who complete gradu-
ate programs in the mathematical sciences. 
“EDGE was the first time in my life I met 
black women who had already done what I 
was getting ready to spend the next several 
years of my life doing,” she said. “And for 
me, there is such a normality to their pres-
ence that I sometimes forget about the actual 
composition of the mathematical commu-
nity. In the years since that first summer 
at EDGE, I’ve been lucky enough to have 
a network of friends, colleagues, mentors, 
and research collaborators, without whom 
I’d be less likely to be where I am today.” 
EDGE’s success demonstrates how being 
in an environment devoid of “otherness” 
perhaps helped these young women excel.

Washington spoke of the benefits of 
attending a black women’s college where 
she did not have to singularly represent an 
entire race. “I went to Spelman College in 
Atlanta, Ga., which is a black women’s col-
lege, and I was immediately blessed with 
not being the only black female in the class,” 
she recalled. “I did not have to explain my 
race or how I looked. I could simply learn 
and absorb copious amounts of knowledge 
that was centered around my perspective as 
a black woman in a multicultural world.”

Wilson noted that women’s colleges 
inspire the same kind of unfettered pro-
ductivity. “If you put women in an envi-
ronment where their womanhood is not 
questioned—the term ‘woman’ is non-

1  https://www.edgeforwomen.org/

descript, where a woman is not an active 
description of you—you have the oppor-
tunity to flourish in mathematics,” she 
said. “It allows you to be more confident 
and comfortable. I think these [women’s] 
programs do away with some of the stigma 
and are helping women.”

What made Darden unique among the 
panelists wasn’t just that she is profiled in a 
best-selling book, but also that she came to 
mathematics at a time when there were no 
such support groups for women and hardly 
any female black role models in the field.

None of that stopped her, however. When 
her father insisted she become a teacher to 
ensure employment after college, Darden 
earned her teacher’s certificate while taking 
several math classes so she could pursue her 
dream. “I still had this idea that I wanted to 
do something that was not teaching,” she 
confessed. “I took my 30 hours of education 
in student teaching, but I took about 16-18 
hours of math that I didn’t have to take as 
electives. I went on and taught school for a 
couple of years, and while I was teaching I 
started going to Virginia State University, 
taking in-service classes in higher math-
ematics.”

When Darden learned that women were 
getting passed over for promotions during 
her time at NASA, she stood up to her super-
visors. “I worked as a human computer for 
five years until I found out that a lot of the 
men we were supporting—the engineers—
were math majors too,” she said. She asked 
her supervisor about transferring to an engi-
neering area, but to no avail. A few months 
later, Darden decided to talk to somebody 
higher up. “I went to a director who was 
about three to four levels higher and said, 
‘I just want to know why men and women 
coming here with the same background are 
assigned to such different areas — you are 
putting the women in the computer pools 
where they don’t write papers and don’t get 
promoted. Men with the same degree are 

going into engineering, they are working on 
their own projects, they are writing papers, 
and they are getting promoted.’ He said 
nobody ever asked that question before.”

Within two weeks of that conversation, 
Darden was promoted and transferred to 
an engineering section. “That’s what I 
really felt was the beginning of my career 
at NASA,” she said.

Washington referenced a pioneer in the 
African American community who still 
motivates her. “At Howard University, our 
departmental meetings are held in a room 
with a picture of Dr. Elbert Frank Cox, the 
first black person in the world to receive a 
Ph.D. in mathematics,” she said. “I didn’t 
learn about Cox until I was fully grown, 
post-Ph.D. Even though we grew up in the 
same neighborhood in Evansville, Ind., for 

me, he was hidden. He spent most of his 
career at Howard, as [have] I. I often stare at 
his photo and I’m encouraged just by look-
ing at it, I’m encouraged to continue the 
pursuit of mathematics and justice.”

Young mathematicians from underrep-
resented communities today owe much to 
people like Cox and Darden—and Dorothy 
Vaughan, Mary Jackson, and Katherine 
Johnson, all of whom were featured in 
Hidden Figures—who paved the way for 
future generations.

“As a mathematician, mother, and activ-
ist, I hope that we all remain unhidden so 
that our children can see that they too can 
become mathematicians,” Washington said.   

Karthika Swamy Cohen is the managing 
editor of SIAM News.

Christine Darden (formerly of NASA) addresses a packed room during the “Hidden Figures” panel 
at the 2017 SIAM Annual Meeting, which took place in Pittsburgh, Pa., this July. Other speakers 
included (from left to right) Erica Graham, Talitha Washington, and Shelby Wilson. SIAM photo.
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Dartmouth College
Department of Mathematics

The Department of Mathematics announces a 
tenure-track opening for the 2018-2019 academic 
year. There is a preference for a junior appoint-
ment, but we welcome applicants suitable for a 
high initial rank. The successful applicant will 
have a research profile with a concentration in 
applied or computational mathematics, and have 
demonstrated ability to work across disciplines 
such as biology, physics, or computer science, 
as well as those at the Geisel School of Medicine 
at Dartmouth, the Norris Cotton Cancer Center, 
or the Thayer School of Engineering. Applicants 
should apply online at www.mathjobs.org, 
Position ID: APACM #10567. Applications 
received by December 15, 2017 will receive first 
consideration. For more information about this 

position, please visit our website at https://www.
math.dartmouth.edu/activities/recruiting/.

Dartmouth College is an equal opportunity/
affirmative action employer with a strong com-
mitment to diversity and inclusion. We prohibit 
discrimination on the basis of race, color, reli-
gion, sex, age, national origin, sexual orienta-
tion, gender identity or expression, disability, 
veteran status, marital status, or any other legally 
protected status. Applications by members of all 
underrepresented groups are encouraged.

California Institute of Technology
Computing and Mathematical Sciences Department

The Computing and Mathematical Sciences 
(CMS) Department at the California Institute of 

Send copy for classified advertisements and announcements to marketing@siam.org; 
For rates, deadlines, and ad specifications visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical sciences 
can click on “Careers and Jobs” at the SIAM website (www.siam.org) or proceed directly 

to www.siam.org/careers.

Professional Opportunities 
and Announcements

NSF PIC Math Grant Sponsors Data Analytics Workshop
By Thomas Wakefield

A quick online search for “data sci-
entist” reveals a wealth of sites that 

convey the growth of this profession, rank 
it as one of the most desirable careers, and 
accentuate the field’s value. As data sci-
ence continues to flourish, it is increasingly 
important that mathematicians understand 
both the field itself, and the way in which 
college and university faculty train and 
prepare students for entry.

To that end, 70 mathematics and statis-
tics faculty gathered at Brigham Young 
University (BYU) in late May for a four-day 
workshop that introduced data analytics, 
machine learning, statistics, and program-
ming to faculty with little to no expertise 
in these areas. Michael Dorff of BYU and 

Suzanne Weekes of Worcester Polytechnic 
Institute (WPI) organized the workshop as 
part of Preparation for Industrial Careers 
in Mathematical Sciences (PIC Math). 
PIC Math is a program of SIAM and 
the Mathematical Association of America, 
with support provided by the National 
Science Foundation (NSF).

The PIC Math Workshop on Data 
Analytics exposed attendees to the tech-
niques and software used in data analytics 
problems (particularly classification prob-
lems), which strengthened their understand-
ing of data analytics and machine learning. 
Participants also learned how to identify 
data analysis projects and mentor under-
graduate students on such projects.

Randy Paffenroth of WPI conducted 
tutorials on the use of Python and sample 
code to implement various supervised clas-
sification algorithms, particularly k-nearest 
neighbors, decision trees, support vector 
machines, and linear discriminant analysis. 
He emphasized the trade-off between bias 
and variance; stressed the importance of 
cross-validation in machine learning; and 
overviewed techniques to prepare data for 
machine learning, including construction 
of a validation set, principal component 
analysis, and bootstrapping. Participants 
worked in groups to implement a clas-
sification algorithm on a data set from the 
University of California, Irvine Machine 
Learning Repository.1 They presented their 
results and discussed pitfalls and issues 
that arose in their implementation of the 
algorithms on the given data. “The main 
focus of the PIC Math Workshop was to 
give everyone the opportunity to get their 
hands dirty working with real data, no mat-
ter their background,” Paffenroth said. “I 
thought that the team exercises were the 

1  http://archive.ics.uci.edu/ml/

most important part of the workshop, and 
I hope all of the attendees enjoyed them!”

Jonathan Nolis, director and lead of 
Insights and Analytics at Lenati, offered 
valuable advice for faculty interested in 
preparing and engaging students pursuing 
data analytics. “It’s great that PIC Math 
exists and math professors are getting more 
involved in data science,” he said. “These 
professors are receiving valuable training 
in the sorts of jobs available in industry and 
how to prepare students for them. As some-
one who frequently hires for analytics jobs, 
I value students who understand the connec-
tion between mathematics and industry.”

The workshop was but one activity of the 
PIC Math grant, which increases students’ 
awareness and pursuit of career options out-
side academia. The grant exposes students 

to real problems from business, industry, 
and government, and provides faculty with 
the support necessary to offer students these 
opportunities. More information about PIC 
Math can be found on the website.2

Acknowledgments: The NSF supports 
the PIC Math program with NSF grant 
DMS-1345499.

Thomas Wakefield is a professor of math-
ematics and statistics at Youngstown State 
University and a fellow of the Society of 
Actuaries. With support from the PIC Math 
program and industrial sponsors, Wakefield 
runs undergraduate mathematics research 
courses that allow students the opportunity to 
work on problems originating from industry.

2  http://www.maa.org/picmath

Participants at the PIC Math Workshop on Data Analytics, held this May at Brigham Young 
University, listen to Randy Paffenroth introduce the Python programming language and 
its machine learning packages. Photo courtesy of Mikayla Sweet of the Mathematical 
Association of America.

See Professional Opportunities on page 11
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Professional Opportunities 
Continued from page 10

Technology (Caltech) invites applications for a 
tenure-track faculty position. CMS is a unique 
environment where innovative, interdisciplin-
ary, and foundational research is conducted in a 
collegial atmosphere. Candidates in all areas of 
applied and computational mathematics, com-
puter science, and statistics are invited to apply. 
Areas of interest include (but are not limited 
to) scientific computing, optimization, statis-
tics, probability, networked systems, control and 
dynamical systems, robotics, theory of computa-
tion, security, privacy, machine learning, and 
algorithmic economics. In addition, we welcome 
applications from candidates who have demon-
strated strong connections between computer 
science, engineering, and applied mathematics, 
and to other fields such as the physical, biologi-
cal, and social sciences. 

A commitment to world-class research, as 
well as high-quality teaching and mentoring, is 
expected. The initial appointment at the assistant 

professor level is for four years, and is contin-
gent upon the completion of a Ph.D. degree in 
applied mathematics, computer science, engi-
neering, or a related field. 

Applications will be reviewed beginning 
November 15, 2017, and applicants are encour-
aged to have all their application materials on 
file by this date. For a list of documents required 
and full instructions on how to apply online, 
please visit http://www.cms.caltech.edu/search. 
Questions about the application process may be 
directed to search@cms.caltech.edu. 

We are an equal opportunity employer and all 
qualified applicants will receive consideration 
for employment without regard to race, color, 
religion, sex, sexual orientation, gender identity, 
national origin, disability status, protected veteran 
status, or any other characteristic protected by law.

Mathematical Sciences Research 
Institute
Director of Advancement & External Relations

m/Oppenheim Associates is assisting the 
Mathematical Sciences Research Institute 
(MSRI) in the search for a new Director for 

Advancement & External Relations. The orga-
nization seeks a proven fundraising professional 
to shape significant endowment campaigns, drive 
annual contributed revenue, and engage new 
donors from various fields of endeavor who will 
support fresh research into mathematics. For more 
information, please review the complete posi-
tion description at http://www.moppenheim.
com/wp-content/uploads/MSRI-Director-for-
Advancement-position-description-Final.pdf.

MSRI is the world’s preeminent center for col-
laborative research in mathematics, and advances 
research into the key unsolved mathematical 
problems that underlie core mathematics and 
applications in the physical sciences, economics, 
engineering, computing, communications, statis-
tical analysis, and the global financial system. 
The prime objective for this position is to develop 
strategies and campaigns that:

• Develop a five-year campaign to add $27 
million to the current MSRI endowment of 
$23 million, and then a second campaign to add 
another $50 million to the endowment by 2030, 
for a total endowment of $100 million.

• Deliver annual fund contributions of $4.5 mil-
lion by 2020 (up from about $3.5 million in 2017).

• Diversify and broaden donor support for 
MSRI through use of conventional and social 
media marketing that communicates MSRI’s rel-
evance to donors of different sectors (technology, 
finance, economics, medicine, etc.).

Founded in 1982 and located in Berkeley, 
Calif., MSRI has a 2017 budget of $9.9 mil-
lion, a staff of 21, and a Board of 33. The 
Advancement Team includes the executive 
director, an associate director, admin support, 
and subcontractors including but not limited to 
web development, videography, and design of 
communications materials.

For additional information or to apply, please 
contact Mark Oppenheim or Patrick Salazar at 
info@moppenheim.com.

More information can be found on the MSRI 
website (http://www.msri.org/web/cms) and on 
Numberphile (https://www.youtube.com/user/
numberphile), an MSRI-supported YouTube 
channel with short and entertaining videos on 
mathematics.
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Separating Shape and Intensity Variation in Images
By Line Kühnel, Stefan Sommer, 
Akshay Pai, and Lars Lau Raket

One of the main goals of image analy-
sis is to describe variations between 

images. Understanding variations in a 
population of images allows researchers 
to classify new subjects as potential mem-
bers of the population distribution. Such 
classification is especially essential in the 
field of computational anatomy [2], where 
locating similarities and differences in 
imaging data for sick and healthy popula-
tions is an important task. Recognizing 
these patterns aids in the detection of sick-
ness or quantification of disease severity in 
newly-observed subjects. Our recent work 
presents a novel, flexible class of mixed-
effects models that separates variation 
in images [3]. The framework combines 
image analysis with theory from functional 
data analysis, and uses statistical methods 
to simultaneously estimate the template 
image and variation effects.

The two largest modes of image variation 
are intensity variation and variation in point 
correspondence. Point correspondence, or 
warp variation, is the shape variability 
compared to the template image. Intensity 
variation is the spatially correlated varia-
tion left after compensating for the true 
warping effect. For example, the spatial 
intensity variation could describe either 
systematic error in an image or anatomical 
variation, such as tissue density or texture.

Intensity variation has previously been 
considered a nuisance that could be han-
dled by pre-processing images. Hence, 

the analysis focused primarily on estimat-
ing shape variation/warp effects. This 
approach can be problematic because 
one does not account for uncertainty of 
the intensity modifications—made when 
pre-processing the images—in the sub-
sequent analysis. This underestimates the 
intensity variation, producing an analysis 
with overconfident estimates regarding 
the precision of the estimated warp effects 
[9]. Several works have considered the 
intensity variation as an integral part of 
the model, using statistical methods to 
simultaneously model intensity and warp 
variation [1, 5]. Compared to other mod-
els, the proposed mixed-effects model 
distinguishes between systematic intensi-
ty variation and independent noise, mak-
ing it useful for denoising images. This 
model simultaneously estimates inten-
sity and warp variation by an alternat-
ing maximum-likelihood estimation and 
prediction; as a result, the model chooses 
the most likely separation of the random 
effects, based on patterns of variation 
in the data. It consequently prevents the 
problem of bias in parameter estimates of 
the random effects. Figure 1 illustrates the 
idea behind the model.

Images included in the model are consid-
ered spatial functional data from 



2  to 
.  

Each observation yi  is a vector of function 
values on a regular lattice, with m m m=

1 2  
grid points ( , ),s t

j k
 i.e., y y s t

i j k j k
= ( ( , ))

,
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image θ : 
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effect. The spatially 
correlated inten-
sity variation xi  is 
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from a Gaussian field 
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while the last term is 
Gaussian white noise 
ε σ
ijk
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model differentiates 
spatially correlated 
noise and independent 
white noise, as both 
can be present in the observed images. In 
this model, warping functions v

i
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for ε
wi
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2 2→  denoting a coordinate-
wise bilinear spline interpolation of a dis-
placement vector, wi

m mw w∈ × ×
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mw wÎ Î 

1 2

, .  The 
displacement vectors w

i
 are modeled as 

random effects following a normal distribu-
tion w C

i
 ( , ).0

Parameter estimation in (1) is based 
on a maximum-likelihood approach. The 
model contains nonlinear transforma-
tions of the random warping functions 
v s t
i j k
( , );  hence, a closed-form expression 

for the likelihood function is unavailable. 
To overcome this, we iteratively linear-
ize the likelihood function around the 
predicted warp parameters w

i
, which at 

each step enables the use of methodol-
ogy from linear mixed-effects models. 
Linearization of nonlinear mixed-effects 

models is effective in standard situations 
and present in many software packages 
[4, 7, 8]. However, one cannot use these 
existing implementations with the large 
sizes of image data and combination of 
linear and nonlinear random effects in (1). 
We model the covariance matrix for the 
spatially correlated intensity effect with 
a sparse inverse to make the computa-
tions feasible. This modeling choice is 

equivalent to assuming conditional inde-
pendence between pixels that are far from 
each other, given all other pixels — often 
a reasonable assumption.

To illustrate the model’s applications, 
we have analyzed data from 10 facial 
images of the same person [10] and 50 
two-dimensional sagittal magnetic reso-
nance imaging (MRI) slices of brains from 
the Alzheimer’s Disease Neuroimaging 
Initiative database [6].

Figure 2 compares an estimated tem-
plate image of the 
proposed model to 
frequently-used mod-
els for the face data. 
Sharpness and repre-
sentativeness of the 
estimates increase 
when going from left 
to right. Upon deter-
mining estimates of 
the template image θ,  
the covariance matrix 
of the intensity func-
tion S, and the cova-
riance matrix for the 
warping effect C, we 
can use the parameters 
to split observations 
in different variations. 
Figure 3 depicts an 

example of a brain observation, split into 
the different variation effects.

In conclusion, we have presented a 
class of models that avoids the classical 
problems of biased estimation of varia-
tions caused by sequential preprocessing 
in image analysis. We achieved this by 
simultaneously modeling the major modes 
of random variation in object shape and 
recorded intensities. This in turn allowed 
maximum-likelihood-based estimation of 
parameters, which would have been other-
wise manually tuned. The maximum-like-
lihood-based approach leads to parameter 
estimates that induce a most likely separa-
tion of shape and intensity variation.
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Figure 1. Fixed and random effects. Left. The template (θ:  leftmost) perturbed by random warp (θ  v:  2nd 
from left) and warp+spatially correlated intensity (θ  v x+ :  3rd from left), together with independent noise   
(y :  4th from left). Right. The warp field v  brings the observation into spatial correspondence, with θ  overlayed 
on the template. Estimation of template and model hyperparameters is conducted simultaneously with prediction 
of random effects, allowing for separation of the different factors in the nonlinear model. Image courtesy of [3].

Figure 2. Estimates for the fixed effect θ  using different models. The models used to calculate the estimates are 
as follows: 2a. Model assuming no warping effect and Gaussian white noise for the intensity model. 2b. 2a. with a 
free warping function based on 16 displacement vectors. 2c. 2a. with a penalized estimation of warping functions. 
2d. The full model (1). Image courtesy of [3].

Figure 3. Model predictions of a mid-sagittal brain slice (shown on the far right). From left to right: The estimated template for the proposed 
model, the warped template from the proposed model, the absolute value of the predicted spatially correlated intensity variation from the 
proposed model, and the full prediction. Image courtesy of [3].


